Definierte Porositäten - Mögliche positive Beeinflussung des Zellwachstums (?)

Prof. Bernd Smarsly, Physikalisch-Chemisches Institut der JLU, Heinrich-Buff-Ring 58, 35392 Gießen

bernd.smarsly@phys.chemie.uni-giessen.de

Overview

- Principles of the generation of mesoporous metal oxides
- Studies on the bioactivity of mesoporous materials (literature)
- The diversity of porosity and morphologies

Research topics AG Smarsly

Characterization of nanostructures

X-ray Detector

Multimodal pore strucures

Nanoparticles

HPLC

Electrospinning of inorganic nanofibers

Ordered nanoporous metal oxides

Applied electrochemistry

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Relationship between self-assembled nanostructures and Physicochemical properties?

The principle of nanocasting

Petrified wood (Arizona, USA):

Wood

Infiltration with alumosilicate ions

Physikalisch-Chemisches

Sol-Gel-Chemistry

Structure of sol-gel derived SiO₂ networks

J. Chem. Soc., Dalton Trans., 2001, 97–108 97

SiO₂ network: ordered

SiO₂ glassy network: disordered

Fig. 7 Two very different structural situations for an identical chemical composition, SiO₂, namely ordered and disordered structure, thus giving rise to a crystalline ceramic and a glass, respectively.

Structure of sol-gel derived SiO₂ networks

J. Chem. Soc., Dalton Trans., 2001, 97–108 97

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Structure of common glass

J. Chem. Soc., Dalton Trans., 2001, 97–108 97

Fig. 9 Disordered structure of a glass in the SiO2-CaO-Na2O system.

"Bottom-up" principle for producing nanoscaled porosity

Template: Mesostructures of surfactants/block copolymers in solution

Nanocasting with block copolymers

JUSTUS-LIEBIG-

INIVERSITÄT SIESSEN

Surface area ca. 90 - 200 m²/g Surface area ca. 500 - 900 m²/g

Physikalisch-Chemisches **Possible morphologies**

Thin films (50 – 1000 nm)

Mesoporous microparticles

Mesoporous powders

Vallet-Regi et al., J. Mater. Chem, 2006, 16, 26-31

lonic co

	Na
SBF	142
plasma	142

J. Chem. Soc., Dalton Trans., 2001, 97–108 97

Physikalisch-

Chemisches

Institut

Fig. 6 Composition of the mineral component of bones.

Vallet-Regi et al., J. Mater. Chem, 2006, 16, 26-31

Fig. 7 Schematic illustration of tissue engineering technique promoted by bioactive ordered mesoporous materials which can be functionalized with organic groups and release different growth factors for tissue regeneration.

Ionic composition of SBF and human plasma (mM)

	Na ⁺	K,	Mg ²⁺	Ca2+	Cŀ	HCO3	HPO42-	SO42-
SBF	142.0	5.0	1.5	2.5	147.8	4.2	1.0	0.5
plasma	142.0	5.0	1.5	2.5	103.0	27.0	1.0	0.5

SBF: simulated body fluid

Fig. 6 TEM micrographs showing different features of SBA-15 after treatment: (a) area where the original mesoporous material is not completely transformed; features of both raw material and apatite are evident; (b) enhanced image reflecting the fact that apatite appears over the modified mesoporous material; (c) FT performed at the amorphous area in b.

> Physikalisch-Chemisches

S85m:

mesopore

structure

3D

Chem. Mater. 2006, 18, 3137-3144

Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration

López-Noriega,† D. Arcos,*,† I. Izquierdo-Barba,^{‡,§} Y. Sakamoto,‡ O. Terasaki, M. Vallet-Regí*,†

Recipe:

Tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), and calcium nitrate, Ca(NO3)₂, 4H2O, (Aldrich) were used as SiO2, P2O5, and CaO sources,

Mesoporous SiO₂ microspheres for bone grafting

Chem. Mater. 2009, 21, 1000-1009

Porous SiO₂ microspheres

Figure 1. SEM micrograph of BMS85P. Magnification 5000×. Inset shows particle size distribution determined by DLS measurements.

Figure 3. TEM images of BMS100x and BMS85x microspheres synthesized with CTAB, P123, and F127. Magnification 30 000×. Fourier transform pattern for BMS85F is shown, demonstrating the hexagonal mesoporous ordering remaining in this sample.

Mesoporous SiO₂ microspheres for bone grafting

Chem. Mater. 2009, 21, 1000-1009

Dissolution behavior

Spheres covered by apatite

Figure 7. SEM micrographs of BMS85P after soaking in SBF for 3 days.

Modifications of apatite

High Specific Surface Area in Nanometric Carbonated Hydroxyapatite

Chem. Mater. 2008, 20, 5942-5944

S. Padilla,[†] I. Izquierdo-Barba,^{†,‡} and M. Vallet-Regf*,^{†,‡}

Synthesis of nanocrystalline, carbonated hydroxyapatite (CHA)

UNIVERSITÄT GIESSEN

Figure 3. TEM images of CHA taken at different magnification (60 000, 300 000 and 600 000 K, respectively). (a, b) Low-magnification images show the small size and the needle-like shape of the nanoparticles. (c) HRTEM image and its corresponding Fourier diffractogram show the *d*-spacing corresponding to the 002 and 211 reflections of an apatite phase.

SiO₂ Aerogels for bone grafting

Ionic composition of SBF and Human Blood Plasma (mM)

ñ 1	Na ⁺	K ⁺	Mg ²⁺	Ca2+	CI-	HCO3-	HPO42-	SO42	
SBF	142.0	5.0	1.5	2.5	147.8	4.2	1.0	0.5	
plasma	142.0	5.0	1.5	2.5	103.0	27.0	1.0	0.5	

Fig. 15 Chemical process taking place between a bioactive glass and a solution of SBF.

Fig. 14 Techniques employed in characterisation of bioactive glasses.

Modifications of apatite

. 20 Evolution with time of the apatite-like layer thickness on a bioactive glass. SEM and EDS techniques have been used.

Fig. 18 Micrograph of a bioactive glass after soaking in SBF for one week.

Problems of using porous SiO₂ as bioactive glass

- Mesoporous powders do not possess macroscopic shape, thus produce "ill-defined" apatite layers
- The influence of the macroscopic shape is not understood
- Small mesopores (< 8 nm) can be easily blocked</p>

Possible requirements for the materials

- Well-defined shape (monoliths)
- Ideally: as little amount of SiO₂ as possible
- Combination of high surface area and high porosity

Mesoporous metal oxide films by "Evaporation-induced self-assembly" (EISA)

Macroscopic homogeneity

Dual micellar templating

"Micellar mixing"/ micellar "alloys" Large pores: block copolymers or colloid particles

Small mesopores: Small surfactants

JUSTUS-LIEBIG-

Hierarchical pore structures

Combination of a large pore volume with large surface area

+ 14 nm pores + 3 nm pores

Surface area: 600 m²/g Pore volume: 1.3 ml/g

http://complex.gmu.edu/images/gallery/thumb/spinnum2ind.jpg

N. Ishizuka et al. (1998)

Meso- and macroporous SiO₂

Structure of monolithic SiO₂ with hierarchical pore structure

Electron microscopy

- Shape control
 Large pores: 2-4 micrometer
 Mesopores: 13 nm
 Surface area: Ca. 250 m²/g
- Pore volume = ca. 0.8 ml/g

Application of monolithic SiO₂ in HPLC

HPLC setup AG Smarsly

Electrospinning

Electrospinning

Literature review

Alignment of Fibers

Li, Wang & Xia, Nano Lett. 2003 331167

Chemisches

Versatile materials by electrospinning

Thick mats

Thin coatings

Possible benefits for medical applications

 Electrospinning allows the generation of mats of reasonable mechanical stability

 Generation of internal porosity possible

Generation of diverse pore structures

The principle of nanocasting

Elektronenmikroskopische Aufnahmen

"Hartes poröses Material"

Nanoporöses SiO₂ Skala: 1 Mikromete

