

Inhomogenitäten in Elektroden: Von der Entwicklung von Lithiumionen-Batterien zur Grundlagenforschung (und umgekehrt...)

Prof. Dr. Petr Novák und Dr. Pascal Maire

Sektion Elektrochemische Speicher Forschungsbereich Allgemeine Energie, Labor für Elektrochemie Paul Scherrer Institut CH-5232 Villigen PSI Schweiz

Scientific Look at Batteries

Outline of the Talk

- Mass Transport in Batteries
- Example: The Graphite Electrode
- Macroscopic Inhomogeneities
- Microscopic Inhomogeneities
- Conclusion

A Representative Lithium-Ion Battery

Processes Inside the Battery

Lithium-Ion Battery

In Situ AFM Investigations: SEI Formation

Cycling of Graphite $6C + Li^+ + e^- \rightleftharpoons LiC_6$

SEI on Graphite

A Charged Graphite Negative Electrode

9

Commercial lithium-ion cell aged by long-term cycling (800 full charge and discharge cycles)

Single Graphite Particles

In Situ Video Microscopy: Graphite Electrode

TIMREX[®] SFG44, 120 mV vs. Li/Li+, C/5

Confocal Raman Microscopy

Raman Spectrum of Graphite

What Is the L_a Value?

- The L_a parameter is the length of the graphene sheets
- The length is in the <u>nanometer scale</u>
- L_a provides a measure of disorder within the graphite structure

Raman Mapping of L_a

- Graphite TIMREX[®] SLX50
- L_a mostly between 20-40 nm
- *Map: 12 x 12 points; 144 spectra*
- Small islands with higher values of L_a

Raman Microscopy: L_a Map of Graphite

Exfoliation of Graphite

thanks to F. Krumeich, ETH Zurich

TIMREX[®] SFG44 in EC/PC 1:1, 1M LiPF₆

20/38

Exfoliation of Graphite: Besenhard's Model

Exfoliation of Graphite

Multipoint Raman on Exfoliating Graphite

The Practical Graphite Electrode

Lithium ions in the pores of the graphite electrode are consumed

 \Rightarrow the Li⁺ concentration in the pores changes \Rightarrow the overpotentials across the electrode change

\Rightarrow measure the current density distribution across the electrode thickness

How to Measure the Current Density Distribution?

Current Density Across the Graphite Electrode

PAUL SCHERRER INSTITUT

Color Changes Across the Graphite Electrode

In Situ Look at the Working Graphite Electrode

Graphite Electrode with Artificial Heterogeneities

Graphite Electrode with an Artificial Heterogeneity

Graphite Electrode with an Artificial Heterogeneity

Evaluation of Data

Evaluation of Data: Fick's Law

Evaluation of Data: Fick's Law

The Result

Finally... Electrochemical Lithiation of V₂O₅

Working Electrode: V₂O₅ (87%), VGCF (3%), PVDF (10%) Counter Electrode: Lithium Electrolyte: EC/DMC 1/1; 1M LiPF₆ Scan Rate 20 μV s⁻¹

Conclusion

 Simple and cheap electrochemical methods provide important results needed on the long way from materials to industrial products.

Acknowledgments

- Swiss National Science Foundation
- Swiss State Secretariat for Education and Research
- European Community (CAMELiA, LiBERAL, and ALiSTORE projects)
- TIMCAL Ltd., Bodio, Switzerland

my current group

<u>Contributors:</u> Hilmi Buqa Flavio Campana Anna Evans Dietrich Goers Laurence Hardwick Hermann Kaiser Fabio La Mantia Pascal Maire Desmond Ng Werner Scheifele Cathie Vix-Guterl

and numerous former group members, other colleagues, and friends!

