

Interface chemistry in lithium (ion) batteries

Grenzflächenchemie in der Lithium(ionen)batterie

Jürgen Janek

I. Interfaces in lithium batteries

- a. "Reactive" interfaces and interphases
- b. "Non-reactive" interfaces
- c. The analytical problem

II. Electrodes and Interphases (SEI)

- a. Example: ToF-SIMS on graphite anode
- b. Example: ToF-SIMS on cathode

III. Electrolyte dispersions

- a) Example: "Soggy sands" filled liquid electrolytes
- b) Example: Filled Polymers

IV. Li-sulfur and Li-air cells

The (fundamental) physico-chemical view...

Interface chemistry in lithium (ion) batteries

Grenzflächenchemie in der Lithium(ionen)batterie

Jürgen Janek

I. Interfaces in lithium batteries

- a. "Reactive" interfaces and interphases
- b. "Non-reactive" interfaces
- c. The analytical problem

II. Electrodes and Interphases (SEI)

- a. Example: ToF-SIMS on graphite anode
- b. Example: ToF-SIMS on cathode

III. Electrolyte dispersions

- a) Example: "Soggy sands" filled liquid electrolytes
- b) Example: Filled Polymers

IV. Li-sulfur and Li-air cells

JLU GießenLaboratory for Materials ResearchBMBFNetwork "Electrochemistry", HE-Lion, LiVeDFGSPP 1191, SPP 1415, PAK 77FCIElectrochemistry Initiative

TransMIT Center for Solid State Ionics and Electrochemistry

Profile: Solid State Ionics/Electrochemistry

Profile: Resources

- Characterisation/Analysis:
 - HREM/EDX/EBSD/nm-prober
 - TOF-SIMS (Ion-Tof) + ESCA
 - PEEM (**µ-ESCA** at ELETTRA/Trieste)
 - XRD, XR-Texturanalytik, AFM (ex situ)
 - IR/Raman (AG Over)
 - EIS, CV, electrochemical techniques
 - microelectrode setups (< 800 °C)
 - (HT) contact angle measurement
 - Catalytic reactor (Kelvin probe, QMS)

• Lithium laboratory:

JUSTUS-LIEBIG-

INIVERSITÄT GIESSEN

- Gloveboxes (6 places -> 8)
- Electrolyte characterisation in glovebox (Karl-Fischer, Tensiometer, Viscosimeter)
- 16-channel cycler (incl. Impedance) -> 90
- PLD deposition/glovebox combination

• Preparation/Chemistry:

- High T laboratory (< 1800 °C, controlled atmospheres)
- Pulsed Laser Deposition
 (3 chambers, 4 planned), Dual beam
- PVD, Sputtering (AG Meyer)
- **Electrochemistry** (e.g. ceramic thin films from non-aqueous solvents)
- Plasma reactors (rf, μw, dc)
- Nano-/Microlithography (joint lab)

Group members:

2 permanent scientists 4 Post-Docs 13 Dr. rer. nat. candidates 1 technician 6 MSc students 8 BSc students

Interfaces in lithium (ion) batteries

The anode SEI

Physikalisch-

see e.g. E. Peled, D. Aurbach or M. Winter for more details

The anode SEI

- SEI composition and properties depend on anode material and electrolyte components
- SEI participates in self-discharge, fast charge/dicharge, ageing
- SEI is one reason for poor cyclability of Li metal

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

see e. g. E. Peled, D. Aurbach or M. Winter for more details

Li

The anode SEI

M. Winter, Z. Phys. Chemie **223** (2009) 1395 The solid electrolyte interphase – The most important and the least understood solid electrolyte in rechargeable Li batteries Physikalisch-Chemisches

Fast Transport along Metal/Electrolyte Interfaces

"Bipolar" electrodes: Surface movement

"free" metal/electrode pieces as a failure mechanism of Li batteries?

K. Peppler and J. Janek, APL 93 (2008) 074104

"Bipolar" electrodes: Surface movement

- accelerated animation
 t = 2370 s (≈ 40 min)
- *T* ≈ 200 °C
- *U* = 750 mV

JUSTUS-LIEBIG-

JNIVERSITÄT GIESSEN

K. Peppler and J. Janek, APL 93 (2008) 074104

The anode/copper contact

JUSTUS-LIEBIG-

INIVERSITÄT

GIESSEN

C(Cu foil, 500 nm CuO) ≈ $5.2 \cdot 10^{-3}$ mAh/cm² C(graphite, 10 mg/cm²) ≈ 3.4 mAh/cm²

Design of Cu surface for improved anode characteristics?

H. Duan et al., J. Power Sources 185 (2008) 512

Fabrication and characterization of Fe_3O_4 -based Cu nanostructured elecrode for Li-ion battery

J. Zhang et al., J. Power Sources **137** (2004) 88 Li insertion in naturally surface-oxidized copper

The cathode interface (interphase?)

- Coating of high voltage cathodes with stable oxides
- LiCoO₂: e. g. ZrO₂ or AIPO₄

JUSTUS-LIEBIG-

C. Li et al., Electrochim. Acta **51** (2006) 3872

Cathode materials modified by surface coating for lithium ion batteries

The cathode/aluminium contact

- air-formed Al₂O₃ layer (a few nm)
- anodic formation of thin protecting AlF₃ film on top during charging

Physikalisch-

- AlF₃ is insoluble in typical Li electrolytes
- "duplex" oxide/fluoride film prevents corrosion
- Al corrosion takes primarily place under the cathode oxides

Interfaces in composite electrolytes

- Inorganic fillers
- e.g. in liquid electrolytes
- e.g. in polymers

The analytical problem: Spectroscopy/Microscopy/Diffraction

	Specific identification	In situ characterization	Non-destructive	High local resolution
FTIR	•	•	•	
Raman	•	•	(●)	(●)
SIMS	•			•
XPS	•			
EXAFS	•	•		
XRD	•	•	(●)	
EDX				•
REM, TEM				•
AFM, STM		•	(●)	•
NMR			•	

SIMS = Secondary Ion Mass Spectrometry XPS = X-ray Photoelectron Spectroscopy

JUSTUS-LIEBIG-

JNIVERSITÄT GIESSEN FTIR = Fourier-Transform IR EXAFS = Extended X-ray Absorption Fine Structure

Electrodes and interphases

Own examples

ToF-SIMS of SEI on graphite

ToF-SIMS of cathode surface

The materials gap: Real electrodes vs. model-type electrodes

JUSTUS-LIEBIG-

19

UNIVERSITÄT GIESSEN

ToF-SIMS

ToF-SIMS

Surface spectroscopy

- Element and molecule information
- ppm sensitivity
- Masses > 10 000

Surface imaging

- Iateral resolution < 100 nm</p>
- parallel mass counting

Depth profiling

- depth resolution < 1 nm</p>
- \blacksquare thin film analysis from 1 nm to > 10 μm
- also for Insulators

3D analysis

ESSEN

- parallel mass counting
- high depth resolution
- high lateral resolution

JUSTUS-LIEBIG-

Physikalisch-Chemisches

ToF-SIMS

High Sensitivity and Lateral Resolution with Bi₃⁺⁺; 50 keV

Physikalisch-

Chemisches

Institut

\Rightarrow 2-10⁻²⁰ mol determined in 100 x 100 nm² area

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN 23

Deposition of LiNi_{0.5}Mn_{1.5}O₄ cathode films (PLD)

Physikalisch-Chemisches

Pulsed Laser Deposition (PLD) / Glovebox combination

ToF-SIMS measurements of cathode surface films

- no Mn within first 150 nm (surface film or dissolution of Mn in electrolyte?)
- F and C₂H₃O₂ show maximum within surface film at 200 nm
- Li shows maximum even deeper
- Si impurity

B. Michalak, JLU Gießen, BSc Thesis

JUSTUS-LIEBIG-

NIVERSITÄT

ESSEN

ToF-SIMS of graphite surfaces (SEI)

ToF-SIMS of graphite surfaces (SEI)

- SIMS images of graphite electrode (wothout binder) after cycling (Bildgröße 1000 μm x 1000 μm)
- Main constituents of SEI: F, Li, C, LiOH, carbonhydrogen fragments (CH₃), LiF and phosphates (PO₂)

Electrolyte dispersions

Mesoporous silica in liquid electrolytes and polymer electrolyte

Prof. M. Fröba (U Hamburg)

Prof. H. D. Wiemhöfer (U Münster)

K. Sann, JLU Gießen, Diploma thesis H. Buschmann, JLU Gießen, Diploma thesis

Liquid electrolytes with SiO₂ nanofiller

JUSTUS-LIEBIG-

K. Sann et al., JLU Gießen/U Hamburg, to be published

Polymer electrolytes with mesoporous SiO₂ nanofiller

Disperse electrolytes

JUSTUS-LIEBIG-

NIVERSITÄT ESSEN

Silica	Pore radius / nm	Specific surface area / m ² g ⁻¹	Density / g cm ⁻³	Average particle size / μm
SBA-15	3,9	348	2,228	13,3
SBA-15	5,8	581	2,215	12,7
SBA-15	8,2	392	2,209	11,6
SBA-15	12,4	301	2,223	12,0
MCM-41	2,9	867	2,278	12,7

- Electrolyte/silica-dispersions with silica mass fractions between 2,5 % and 10 % (if possible)
- Standard (commercially available) electrolyte 1m LiPF₆ in EC/DEC 3:7 water content < 5 ppm
- Determination of the conductivities via Impedance spectroscopy between 1 kHz and 1 Hz

Physikalisch-Chemisches

Lithium-sulfur battery

Lithium-O₂ battery

- thin Li metal foil anode
- Polyacrylonitrile-based plasticized polymer electrolyte
- Lithium salt: LiPF₆
- thin carbon composite electrode

Table I. Characteristics of some metal/oxygen battery couples.

Metal/O	C oj Jealized cell	Calculated pen-circu voltage	Theoretical specific energy ^b (Wh/kg)	
Couple	reaction ^a	(V)	Including O ₂	Excluding O_2
$\begin{array}{c} \text{Li/O}_2\\ \text{Al/O}_2\\ \text{Ca/O}_2\\ \text{Zn/O}_2 \end{array}$	$\begin{array}{l} 4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O} \\ 4\text{Al} + 3 \text{ O}_2 \rightarrow 2\text{Al}_2\text{O} \\ 2\text{Ca} + \text{O}_2 \rightarrow 2\text{CaO} \\ 2\text{Zn} + \text{O}_2 \rightarrow 2\text{ZnO} \end{array}$	$2.91 \\ 2.73 \\ 3.12 \\ 1.65$	5,200 4,300 2,990 1,090	$11,140 \\ 8,130 \\ 4,180 \\ 1,350$

^a The reduction of O_2 to O^{2^-} usually occurs only in the presence of a catalyst; often the product is the peroxide, $O_2^{2^-}$. ^b Includes only the active materials. Since O_2 does not have to

be carried in the battery, values are given for the cases of including and excluding O_2 . The battery weight will increase once the discharge begins.

K.M. Abraham and Z. Jiang., J. Electrochem. Soc., 143 (1), 1996, 1

- Study of interfaces as a key to understand cell kinetics and stability
- Detailed information requires **combination** of several techniques
 - similar strategy as in heterogeneous catalysis!
 - bridging the "pressure gap" and the "materials gap"
- Design of interfaces as a key target for improved cells
 - SEI relatively well understood for standard anodes
 - cathode interface by far less studied (-> high voltage cathodes)

Dr. P. Adelhelm

Synthesis, structure

Project leader

BMBF KVS

LiVe

Dr. M. Rohnke

Dr. M. Vracar

T. Jäger

J. Reinacher

Plasma chemistry, diffusion, hybrid materials

ToF-SIMS

batteries

HE-Lion

Cell design

Data acquis.

Project leader

Li/O₂

Dr. B. Luerssen

Cathodes, Li/S batteries,

µ-ESCA, PEEM

electrode preparation

S. Diegelmann

Artificial SEI, solid Li electrolytes

PLD, PLD/Glovebox

R. Dippel

Dr. K. Peppler

Li metal anodes, Li/O₂ batteries

Li/O,

batteries

Teaching

Disperse

electrolytes

electrolyte

characteri-

sation

Education &

Post-Doc

Microelectrodes, **HRSEM**

Dr. rer. nat.

B. Michalak

N. Ariai

+ B3: C. E. Bender, B. Jache, S. Wenzel, J. Schultheis

+ BSc M. Falk

The lithium team @ AG Janek

Dr. J. Sann

Project leader

spectroscopy

