

Materials Valley – Workshop Hanau, 18.03.2010

IMS Substrates Thermal Management for Power and LED applications

Michael Stoll

IMS European Business Manager

Agenda

- Thermal Management key in your design
- IMS technology
- Dielectric Characteristic
 - Thermal Resistance vs
 - Thermal Conductivity
- Next Generation Dielectric
- Thermal Model and Example
- Summary

The World Leader In Thermal Management Technology

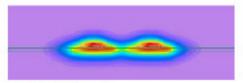
- Gap Pad® Thermally Conductive Material for Filling Air Gaps
- Sil-Pad® Thermally Conductive Insulator
- Hi-Flow® Phase Change Material
- Gap Filler Liquid Gap Filling Material
- Thermal Clad® Insulated Metal Substrate
- Liqui-Bond® Thermally Conductive Liquid Adhesive
- Bond-Ply® Thermally Conductive Adhesive Tape

Where does the heat come from?

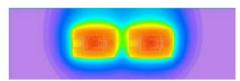
	Incandescent† (60W)	Fluorescent† (Typical linear CW)	Metal Halide‡	LED*	Some claims
Visible Light	8%	21%	27%	15-25%	of LEDs over 30
IR	73%	37%	17%	~0%	
UV	0%	0%	19%	0%	visible light
Total Radiant Energy	81%	58%	63%	15-25%	This is the
Heat (Conduction + Convection)	19%	42%	37%	75-85%	source of to
Total	100%	100%	100%	100%	

[†] IESNA Handbook † Osram Sylvania

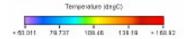
Source: PNNL-SA-51901, February 2007



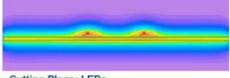
^{*} Varies depending on LED efficacy. This range represents best currently available technology in color temperatures from warm to cool. DOE's SSL Multi-Year Program Plan (March 2006) calls for increasing extraction efficiency to more than 50% by 2012.



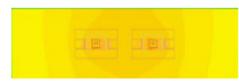
Why is Thermal Management important


FR4 PCB

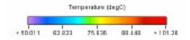
Cutting Plane: LEDs



Cutting Plane: PCB



$$\Delta T = T_{lunc} - T_{amb} = 118.9 \, ^{\circ}C$$


Insulated Metal Substrate

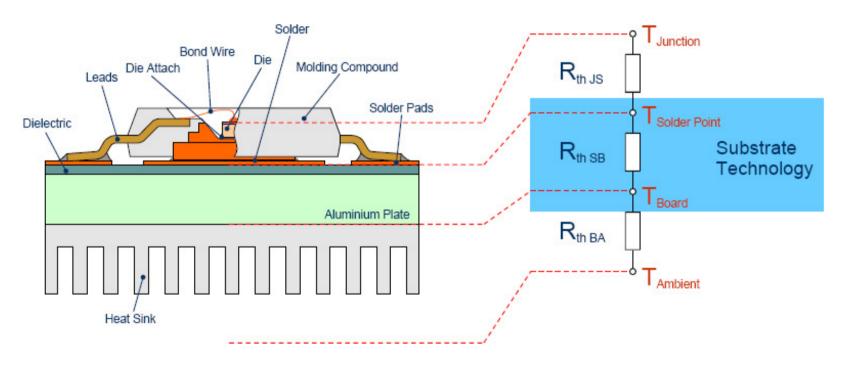
Cutting Plane: LEDs

Cutting Plane: PCB

$$\Delta T = T_{Junc} - T_{amb} = 51.3 \,^{\circ}\text{C}$$

Influencing Factors

- Board material with higher thermal conductivity
- Attach to additional heat spreader (PCB on Aluminium)
- Solder pad layout and placement of other components
- Use of thermal vias


Opto Semiconductors

The World Leader In Thermal Management Technology

Thermal Substrate Technologies

Thermal System Configuration

Thermal Resistor Network

Opto Semiconductors

Thermal Substrate Technologies

Copper

Gold

Aluminium

Steel (low carbon)

Boron Nitride

Solder

Stainless Steel

Alumina

Mica

Water

FR4

Epoxy

Mylar

Air

90..400 W/mK

290 W/mK

50 .. 235 W/mK

66 W/mK

39 W/mK

20..50 W/mK

20 W/mK

27 W/mK

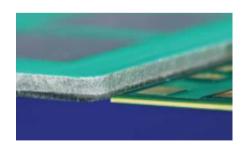
0.7 W/mK

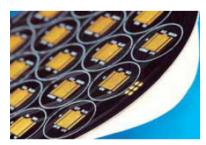
0.5 W/mK

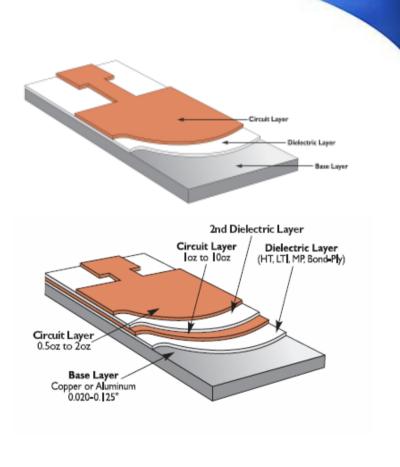
0.3 W/mK

0.2 .. 0.3 W/mK

0.2 W/mK


0.027 W/mK




IMS Substrate Technology

Available IMS Systems

Single Layer – majority **Double Layer** Ultra Thin Substrate

IMS – Dielectric Characteristic

SINGLE	LAYER	Т	HERMAL PERFO	RMANCE	DIELECTRIC P	ERFORMANCE		ОТН	IER
Part Number	Thickness ¹ [.000"/µm]	Impedance ² [°C/W]	Impedance ³ [°C in ² /W] / [°C cm ² /W]	Conductivity ⁴ [W/m-K]	Breakdown ⁵ [kVAC]	Permittivity ⁶ [Dielectric Constant]	Glass Transition ² [°C]	U.L. Index ⁸ [°C]	Peel Strength ^o [lb/in] / [N/mm]
HT-04503	3/76	0.45	0.05 / 0.32	2.2	6.0	7	150	140/140	6 / 1.1
HT-07006	6/152	0.70	0.11/ 0.71	2.2	11.0	7	150	140/140	6 / 1.1
MP-06503	3/76	0.65	0.09 / 0.58	1.3	8.5	6	90	130/140	9 / 1.6
MULTI-	LAYER								
HT-09009	9/229	0.90	0.16 / 1.03	2.2	20.0	7	150	150/150	6/1.1
HT-07006	6/152	0.70	0.11/ 0.71	2.2	11.0	7	150	140/140	6 / 1.1
CML-11006*	6/152	1.10	0.21 / 1.35	1.1	10.0	7	90	130/130	10 / 1.8
HIGH POWE	R LIGHTING								
HPL-03015	1.5/38	0.30	0.02 / 0.13	3.0	2.5	6	185	**	5 / 0.9
Method Description	1 - Optical 2- Internal TO- RD 2018	220 test 4	- Calculation from - Extended ASTN - ASTM D149		6 - ASTM D150 7 - Internal MDSC 8 - U.L. 746 E	test RD 2014	9 - ASTM I *CML is ava **Pending	D2861 allable in pre	epreg form

Note: For applications with an expected voltage over 480 Volts AC, Bergquist recommends a dielectric thickness greater than 0.003" (76µm).

Note: Maximum test voltage is a function of material and circuit design. Typical proof test does not represent the maximum.

Note: Circuit design is the most important consideration for determining safety agency compliance.

WORLD HEADQUARTERS 18930 West 78th Street Chanhassen, MN 55317 1.800.347.4572 PH 952.835.2322 FAX 952.835.0430

Thermal Products Membrane Switches Touch Screens Electronics Labels and Graphic Overlays WWW.BERGOLIISTCOMPANY.COM

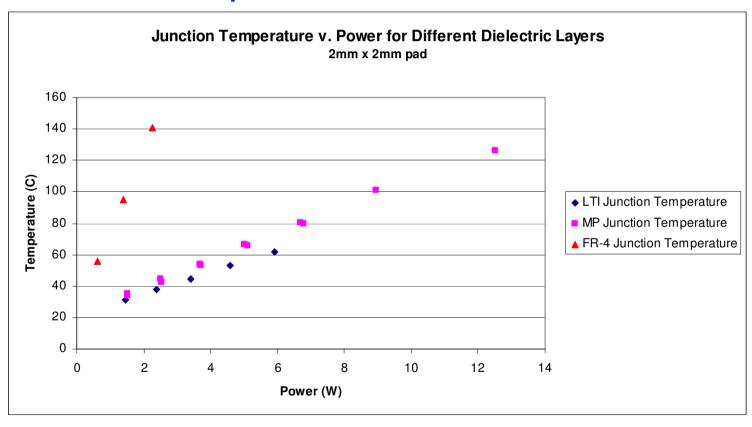
Thermal Measurement Variations

	Non-Standard Thermal Conductivity Test Methods and Model (W/m-K)							
Part Number	Model ¹	Guarded Hot Plate Laminate²	Guarded Hot Plate Laminate ³	Laser Flash Laminate ²	Laser Flash Laminate³			
HT-04503	9.0	32.2	36.4	67.6	115			
HT-07006	9.0	21.5	23.3	46.0	86.5			
MP-06503	4.5	14.0	24.0	34.9	102			

Met ho d
Description

- 1 Bruggeman Model
- 2 Tested with 0.062" (1.57mm) 5052 aluminum substrate and 2 oz. (70µm) copper foil
- 3 Tested with 0.062"(1.57mm) 1100 copper substrate and 2 oz. (70µm) foil

	Standardized Test Methods (W/m-K)					
Part Number	ASTM D5470¹	ASTM E1461²				
HT-04503	2.2	1.97				
HT-07006	2.2	1.97				
MP-06503	1.3	1.17				

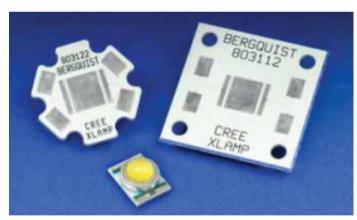

Method Description

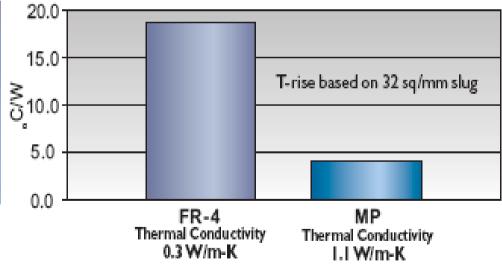
- 1 ASTM D5470 Guarded Hot Plate
- 2 ASTM E1461 Laser Flash Diffusivity

poroturo V. Powor

Junction Temperature v. Power

Light Output of Die on Different Dielectric Materials at Delta T of 25C

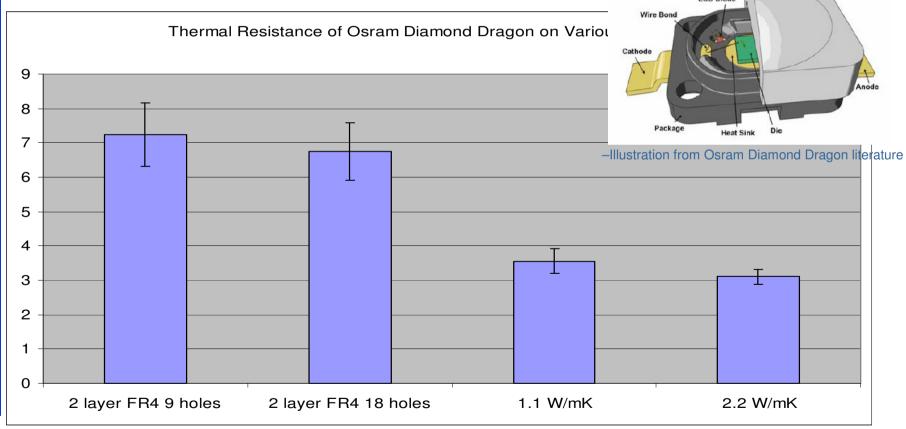




Thermal Substrate Technology Example

Comparing MCPCB Substrate – STAR Design

Thermal Impedance of FR4 compared to MP

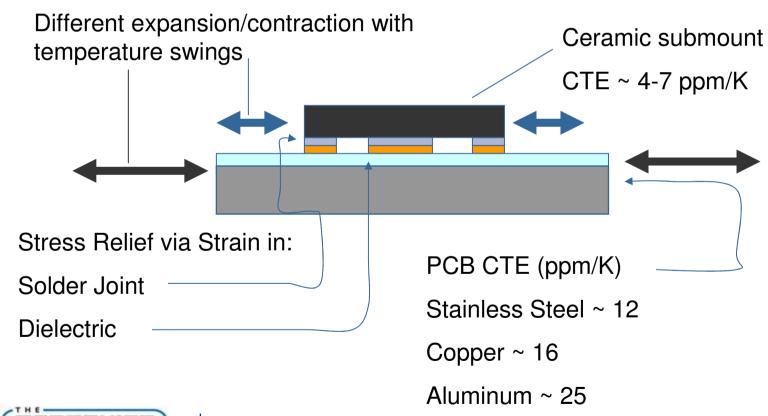


The World Leader In Thermal Management Technology

Thermal Impedance of Osram Diamond Dragon on different

substrates

WORLD HEADQUARTERS 18930 West 78th Street Chanhassen, MN 55317 1.800.347.4572 PH 952.835.2322 FAX 952.835.0430

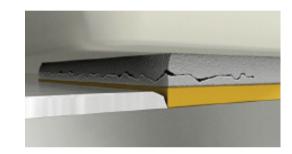

Thermal Clad® - IMS Insulated Metal Substrate

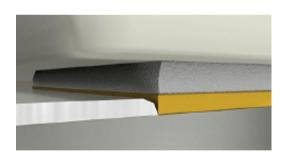
KEY TAKE-AWAY POINTS

- 1. Dielectric thermal impedance dominates the conductive portion on thermal impedance and use of insulated metal substrate (IMS) boards is critical to thermal management
- 2. TIM2 the thermal interface between PCB and heat sink can be similar in magnitude to the board resistance making **TIM2 selection important**.
- 3. Reducing the conductive portion of the thermal budget, by using IMS, provide more options for heat sink selection.

WORLD HEADQUARTERS 18930 West 78th Street Chanhassen, MN 55317 1.800.347.4572 PH 952.835.2322 FAX 952.835.0430

The World Leader In Thermal Management Technology


New Dielectric Generation Thermo Mechanical Fatigue of Solder Joints


Driving Variables

- -CTE mismatch between package and circuit board
- -Geometry of the package
- -Solder joint material and thickness
- -Temperature swings and dwell time
- -Modulus and thickness of circuit dielectric
- -Thermal resistance of dielectric

Effects

- -Cycling of thermal stresses with each temperature cycle
- -Progressive mechanical fatigue/degradation of solder joint
- -Loss of function through loss of mechanical/electrical/thermal contact

The World Leader In Thermal Management Technology

New Dielectric Generation Solder Joint Reliability and Model Results

The World Leader In Thermal Management Technology

New Dielectric Generation Thermo Mechanical Fatigue of Solder Joints

Benefits

- Low modulus to absorb CTE stresses
- Thermal conductivity of 0.9 W/m-k
- Improved solder joint reliability

Applications

- Ceramic LED packages
- Applications with significant CTE mismatches
- Direct die applications

LM Dielectric Typical Values						
LM-13004	VALUE	TEST METHOD				
THERMAL PROPERT	TES .					
	0.9 Wim-K	ASTM DS470				
Thermal Resistance	0.17°GmW (1.127°GmW)	ASTM DS470				
	100,C	ASTM E1356				
Max Operating Temp.	130°C°	U.L.796				
	290°C°	U.L.796				
ELECTRICAL PROPE	RTIES					
Dielectric Constant	3.7	ASTM D150				
	0.002 ((B/12Hz)	ASTM DI50				
Capacitance	189 pE/m² (29pE/cm²)	ASTH D150				
	10 E 12Ω-m	ASTM DS109				
Surface Resistivity	-	ASTM D5109				
	1500 Viruli (59 kW/mm)	ASTM D149				
Breakdown Voltage	6.0 MAYC	ASTM D149				
MECHANICAL PRO	PERTIES					
Dielectric Thickness	0.004" (102 µm)	Visual				
Feel Strength	4.5 lb/in (0.8 Nimm)	ASTM D2S61				
	125µm/m°C	ASTM D 1861				
CTE in XY/Z Axis >Tg	315µm/m°C	ASTMID 1861				
CHEMICAL PROPER	TIES					
Water Absorption after 168 hours	0.30% wt.	ASTM ES95				
Out-Gazzing Total Mass Loss	0.76% ws.	ASTM ES95				
Collect Volatile Condensable Material	0.09% ws.	ASTM ESPS				
AGENCY RATINGS	& DURABILITY					
U.L. Continuous Operating Temperature	130°C*	UL.746B				
U.L. Flammability	V-0	U.L. 94				
Comparative Tracking Index (CTI)	Pending	ASTM D3638				
Solder Reat	Pins	IPC TM 650 2.4.13				

WORLD HEADQUARTERS 18930 West 78th Street Chanhassen, MN 55317 1.800.347.4572 PH 952.835.2322 FAX 952.835.0430

Thermal Interface Solutions for LED Designs

- Case Study
- Thermal Measurements comparisons
- Summary

Case Study: 1000 Lumen output Lamp (1st order approximation)

- This is approximately what is put out by a 75W incandescent lamp
- LED has electrically active heat spreader
- Assume the heat sink is the same for all substrate materials (0.5 C/W)
- Assume LEDs are thermally independent of one another until they reach the heat sink

Case study: 1000 Lumen Output Lamp

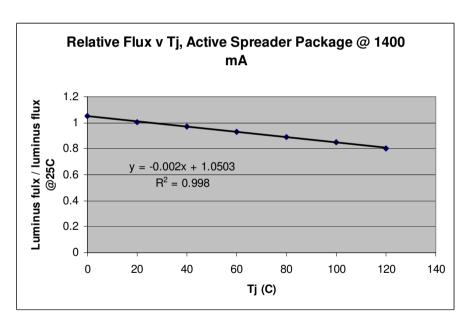
- Rule of thumb; 15 40% of LED output loss in the lamp optics (assume 20% for this study)
 - Our 1000 lumen lamp becomes 1250 lumens required
- **Driver not included in assumptions**
 - Adding the driver will increase wattage by 15%

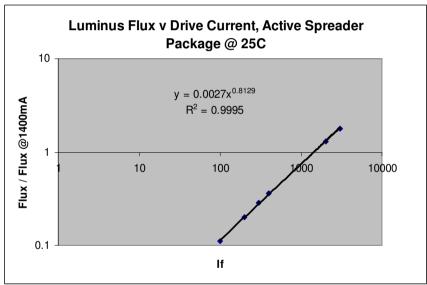
How Long Must the Lamp Last?

 For Commercial and Outdoor residential applications we need B50, L70 of 35,000 hours, and a 3 year warranty to meet EnergyStar Category A requirements

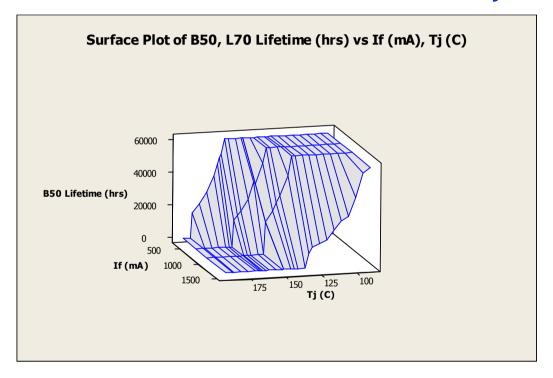
Thermal Resistance of LED devices from test

- LED with electrically active Heat Spreader
 - FR4 9 holes 7.24 C/W
 - FR4 18 holes 6.74 C/W
 - Thermal Clad MP 3.56 C/W
 - Thermal Clad HT 3.1 C/W


Note: FR4 with thermal vias requires electrical isolation, so we will add another 0.2 C/W for a good TIM.



Adjust Lumen Output for Temperature and Drive Current



Understand Effect of Drive Current & Tj on Lifetime

B50 Lifetime (hrs) = 156523 - 33.4 If (mA) - 665 Tj (C)

Iteratively Solve for Drive Current and Tj for A Lifetime that Meets Energy Star Criteria (35,000 hrs)

- Tj is a function of Power which is a function of Vf and If.
- If is a function of Vf
- Life is a function of If and Tj, or ultimately Vf

Results

All forward current set to 1500 mA

	Thermal Resistance /					% Light	Lifetime
Material	device	Tj	Vf	lf	Power	output	(hrs)
2 layer FR4 9 + Sil Pad	7.44	118.9	3.55	1500	5.33	84	27288
2 layer FR4 18 + Sil Pad	6.94	115.4	3.55	1500	5.33	84	29658
MP + grease	3.56	99.0	3.55	1500	5.33	88	40528
HT + grease	3.1	96.7	3.55	1500	5.33	88	42058

FR4 system does not meet Energy Star lifetime requirements

Results

All lifetimes set to 35,000 hours

	Thermal						
	Resistance /						% Light
Material	device	Tj	T amb	Vf	lf	Power	output
2 layer FR4 9 + Sil Pad	7.44	114.6	79.3	3.51	1355	4.75	78
2 layer FR4 18 + Sil Pad	6.94	112.6	79.5	3.52	1396	4.91	80
MP + grease	3.56	100.9	80.1	3.59	1629	5.85	94
HT + grease	3.1	98.8	80.2	3.60	1669	6.01	96

Continued

 If the minimum flux (100%) from the lamp is 130 lumens and we want 1250 (1000/.8), then

of LEDs =
$$1250 \div (\% light output \times 130)$$

Of course we need to round up on number of devices

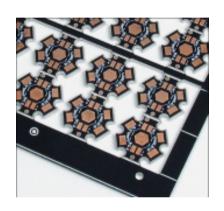
What does this mean?

- Assuming the heat sink costs "\$5
- The LEDs cost ~ \$3/piece
- Then the results are

		Lamp
Material	LEDs Needed	Cost
2 layer FR4 9 + Sil Pad	13	\$46.28
2 layer FR4 18 + Sil Pad	12	\$43.22
MP + grease	11	\$40.10
HT + grease	11	\$40.27

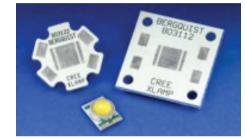
Summary Case Study

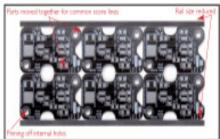
- IMS, like Bergquist T-Clad, offers thermal, structural, and cost effective solution to mounting packages. Approximately 1-5% of the system BOM cost, and can reduce the number of LEDs required.
- Conductive thermal management is becoming critical to finding thermal solutions with package power dissipation approaching 1-2 W/mm²

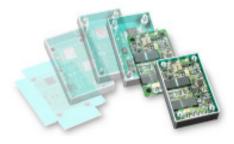


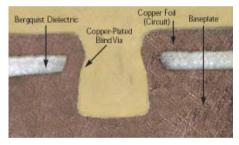
Key Advantages of the IMS Technology

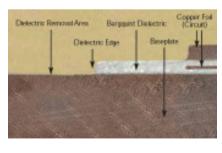
- Measurable improvement in Watt-Density
- Simplified thermal design due to IMS
- Reliability dielectric and base plate integrity
- Array panelization available
- Structural rigidity which allows for features like threaded holes
- Variety of configurations are available (shape, dielectric/base plate, option for direct die bond to base plate)

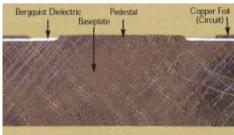


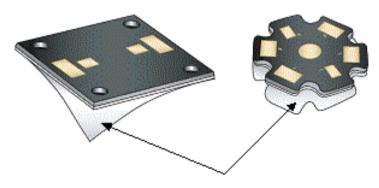

Bergquist The World Leader In Thermal


Management Technology


Bergquist known for


- Materials Manufacturer
 - ✓ Thermal Interface Materials
 - ✓ IMS Materials
- **Circuit Provider for IMS**
 - ✓ IMS circuits supplier
 - Component and COB level
 - Piece Part and Array's
 - ✓ Active Base Plate Solutions
 - Electric Vias to Metal Base
 - Selective Dielectric Removal
 - Pedestal Forming
 - ✓ Special Processes 3D circuits





Combining IMS and Thermal Interface Materials

Bond Ply 450 With Release Liner

Bond Ply 450PA is pre-applied and withstands Reflow temperatures > easy peel and place <

WORLD HEADQUARTERS 18930 West 78th Street Chanhassen, MN 55317 1.800.347.4572 PH 952.835.2322 FAX 952.835.0430

The World Leader In Thermal Management Technology

For more information contact

Michael Stoll
IMS European Business Manager
m.stoll@bergquist.de
+49 171 38 510 44

please visit our website at: www.bergquistcompany.com

