Siliziumbasierte Mikrosensoren für biotechnologische Anwendungen

Matthias Bäcker Hanau, 22. April 2010

Institut für Nano- und Biotechnologien, FH Aachen, Campus Jülich

> Labor für Chemo- und Biosensorik> Prof. Dr. Michael J. Schöning

> Labor für Zellkulturtechnik> Prof. Dr. Manfred Biselli

Forschungszentrum Jülich GmbH

Mitarbeit von: Dipl.-Ing. Stefan Beging Dr. Torsten Wagner Dipl.-Ing. Thomas Schnitzler

Übersicht

- > Feldeffektbasierte Sensorkonzepte I
 - > EIS-Sensoren
- > CIP- und SIP-Untersuchungen an EIS-Sensoren zur pH-Messung
- > pH-Monitoring in Bioreaktoren
- > Feldeffektbasierte Sensorkonzepte II
 - > LAPS
- > Multiparametermessung mit EIS- und LAPS-Systemen

Anforderungen an die Sensorik in der Biotechnologie

> Sensitivität	 Messbereich muss prozessrelevanten Bereich abdecken Sensoren müssen langzeitstabil sein
> Selektivität	> Medienbestandteile können an der Sensor- oberfläche adhärieren und das Sensorverhalten negativ beeeinflussen
> Stabilität	 Stabile Messsignale auch unter harschen Bedingungen (Einfluss durch Scherkräfte, Sterilisation, Medienkomposition)
> Einsatz/Aufbau	 » "Online/Inline"-Messung > Gewährleistung der Sterilität des Bioreaktors > Jedweder Sensor muss sterilisierbar sein

> Verwendung biokompatibler Materialien

Feldeffektbasierte Sensoren

LAPS (Light-addressable Potentiometric sensor)

ISFET (Ion-sensitive field-effect transistor)

Herstellung eines EIS-pH-Sensors

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Funktionsprinzip eines kapazitiven EIS- (Elektrolyt-Isolator-Halbleiter) pH-Sensors

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Verwendung zum Cleaning-in-place

Schöning, M.J.; Brinkmann, D.; Rolka, D.; Demuth, C.; Poghossian, A., Sens. Actuators B, 111-112 (2005) 423-429.

Verwendbarkeit zum Sterilisation-in-place

Bäcker, M.; Beging, S.; Biselli, M.; Poghossian, A.; Wang, J.; Zang, W.; Wagner, P.; Schöning, M.J., *Electrochim. Acta 54 (2009) 6107-6112.*

pH-Messung in Kulturmedium

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Inline pH-Messung im Bioreaktor

Übersicht

- > Feldeffektbasierte Sensorkonzepte I
 - > EIS-Sensoren
- > CIP- und SIP-Untersuchungen an EIS-Sensoren zur pH-Messung
- > pH-Monitoring in Bioreaktoren
- > Feldeffektbasierte Sensorkonzepte II
 - > LAPS
- > Multiparametermessung mit EIS- und LAPS-Systemen

Feldeffektbasierte Sensoren

EIS (Electrolyte-insulatorsemiconductor)

LAPS (Light-addressable Potentiometric sensor)

ISFET (Ion-sensitive field-effect transistor)

H AACHEN JNIVERSITY OF APPLIED SCIENCES

Funktionsprinzip eines Lichtadressierbaren potentiometrischen Sensors (LAPS)

"Cells" meet "silicon"

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Bestimmung der Ansäuerungsrate von CHO-Zellen

Wagner, T.; Molina, R.; Yoshinobu, T.; Otto, R.; M.; Schöning, M.J., Electrochimica Acta, 53 (2007) 305-311.

Übersicht

- > Feldeffektbasierte Sensorkonzepte I
 - > EIS-Sensoren
- > CIP- und SIP-Untersuchungen an EIS-Sensoren zur pH-Messung
- > pH-Monitoring in Bioreaktoren
- > Feldeffektbasierte Sensorkonzepte II
 - > LAPS
- > Multiparametermessung mit EIS- und LAPS-Systemen

Aktuelle Projekte: Cellsens

т

pH-Wert	Kapazitive Feldeffektstruktur (EIS-Sensor)
Elektrolytleitfähigkeit	Konduktometrisch mit Interdigitalelektroden
Temperatur	Widerstandsänderung einer Platinelektrode
Glucose	Amperometrischer enzymbasierter Biosensor
Glutamin	Amperometrischer enzymbasierter Biosensor

Interdigitale Mäanderstrukturen zur kombinierten Leitfähigkeits- und Temperaturmessung

FH AACHEN JNIVERSITY OF APPLIED SCIENCES

Elektrochemische und physikalische Charakterisierung des Glucosesensors

Aktuelle Projekte: Bio-LAPS und EMSiG

Vielen Dank für die Aufmerksamkeit.

Die Autoren bedanken sich für finanzielle Unterstützung durch das BMBF (Projekte "Cellsens" und "EMSiG") und das BMELV (Projekt "Bio-LAPS").