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Rare Earths in Automotive Catalysts
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Three-way catalysis
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l-window of a Three-way Catalyst
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Closed loop air/fuel ratio control

Source: http://www.bosch-kraftfahrzeugtechnik.de/media/de/pdf/antriebssystemepkw/
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Composition of Three-way catalysts

 oxygen storage materials

 stabilized alumina

 platinum group metals

 promotors

 scavengers

 stabilizers 



Oxygen Storage

Materials
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Oxygen storage and release reactions

2 CeO2 + CO  Ce2O3 + CO2

2 CeO2 + H2  Ce2O3 + H2O

6 CeO2 + “CH2”  3 Ce2O3+ H2O + CO2

2 Ce2O3 + O2  4 CeO2

2 Ce2O3 + 2 NO  4 CeO2 + N2

Ce2O3 + H2O  2 CeO2 + H2

Ce2O3 + CO2  2 CeO2 + CO
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Ceria-Zirconia mixed oxides

Source: Roman Möller, Martin Votsmeier, Christopher Onder, Lino Guzzella, Jürgen Gieshoff

Applied Catalysis B: Environmental 91 (2009) 30–38
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Stabilized Ceria-Zirconia mixed oxides

Source: Wikimedia commons

• cubic crystal structure

• typical dopants: La, Pr, Nd, Y, Sm

• improved redox behaviour

• improved thermal stability 

• improved phase stability

Fluorite Structure

Ce,Zr    O 
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Influence of Ceria/Zirconia ratio on OSC
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Impact of precious metals on oxygen storage 

behaviour of ceria-zirconia mixed oxides
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Impact of OS materials on lightoff of an aged TWC

Hydrocarbon Conversion
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Temperature Requirements for TWC

1996 1997 1998 1999 2000 2001 2002 2003 2004

Typical aging temperature in front of catalyst (fuel cut aging cycle)

850°C 870°C 890°C 930°C 950 °C

2005
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On-board

diagnosis
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Regulatory need for on-board diagnosis

Directive 70/220/EEC:

8.1. Vehicles with positive-ignition engines

8.1.1. Petrol fuelled engines

With effect from 1 January 2000 for new types and from 1 January 2001 for all 

types, vehicles of category M1 - except vehicles the maximum mass of which 

exceeds 2 500 kg - and vehicles of category N1 class I, must be fitted with an 

on-board diagnostic (OBD) system for emission control in accordance with 

Annex XI.

With effect from 1 January 2001 for new types and from 1 January 2002 for all 

types, vehicles of category N1 classes II and III and vehicles of category M1, 

the maximum mass of which exceeds 2 500 kg, must be fitted with an OBD 

system for emission control in accordance with Annex XI.
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Legal emission and OBD limits in Europe

100 100 100

320

190
150

100 68

400

250

10080 60 60

600

9068

300

0

100

200

300

400

500

600

700

EU4 EU5 EU6 OBD EU4 OBD EU5 OBD EU6

(proposal)

e
m

is
s
io

n
s
 [

m
g
/k

m
]

CO/10 Hydrocarbons NOx



Measurement of 

Oxygen Storage 

Capacity on a Vehicle
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Oxygen Storage Test Setup for OBD 

l1

l2

Engine Out

Catalyst
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Degradation of “Lambda Absorption” Capacity
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Amplitude Ratio measurement as diagnosis 

method for catalyst performance

Amplitude ratio = adown/aup
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Catalyst diagnosis by l-step test
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Relation of Oxygen Storage and Engine Map
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Correlation between OSC and performance
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Substitutes for ceria 

in oxygen storage 

materials
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Electron configuration of cerium: [Xe] 6s25d14f1

What makes ceria so special for OS ?

O

CeIVCeIV

Vacancy

CeIIICeIII

- ½ O2

+ ½ O2
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What makes ceria so special for OS ?

Source: N.V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov and B. Johansson

Phys. Rev. Lett 89/16 (2002) 166601
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The density of states of CeO2 shows the presence of a narrow, empty Ce f band in the gap 

between the valence and conduction bands. In perfect CeO2, every oxygen atom is situated in 

the center of a tetrahedron, surrounded by four Ce atoms. All four valence electrons of Ce  

nominally leave the host atoms and transfer into the p bands of oxygen atoms. 

The process of oxygen-vacancy formation in ceria: An oxygen atom moves away from its 

lattice position leaving behind two electrons, which may occupy the lowest possible empty 

state, which is the f band of Ce. As was shown by Skorodumova et al., a substantial energy 

gain is achieved by their further condensation to localized f states on nearest Ce atoms, 

turning Ce4+ into Ce3+. In Ce2O3 the Ce f electron is fully localized. 

Localization of the 
“released” electrons at 

two Cerium atoms



Rare Earths in Automotive Catalysis 33

Can we at least omit some Rare Earth Oxides ? 

Design Features of low REO Three-way Catalysts:

• Less oxygen storage material needed compared to standard TWC

• Highly dynamic OSC material type needs to be used

• Highly aging-robust OSC material type needs to be used 

• OSC materials „make room“ for other ingredients 

• Different processing possible

Development of low Rare Earth Three-way 

Catalysts
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Performance of low Rare Earth TWC
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Summary



Rare Earths in Automotive Catalysis 36

Summary

• Rare Earth Oxides are important part of exhaust aftertreatment 

catalysts, especially for gasoline aftertreatment.

• Ceria as essential part of mixed oxide oxygen storage materials 

is the most important REO for emission catalysis.

• Oxygen storage materials play a vital role for on-board diagnosis 

of emission control devices.

• Currently no equivalent substitute for ceria in oxygen storage 

materials is available.

• Development of low-OSC and in turn low-REO Three-way 

catalysts has been demonstrated to be feasible.



THANK YOU


