

Seltene Erden in der SCR-Katalyse

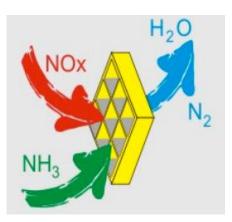
(Vortrag im Rahmen des Workshops "Seltene Erden -Ihre Bedeutung für die Industrialisierte Welt" des Materials Valley)

Rare Earths in S(elective) C(atalytic) R(eduction)

K.Schermanz

20.1.2011

- Content
- What is SCR ?
- Driving forces for SCR
- Materials applied in SCR state of the art
- Innovative materials for SCR containing Rare Earths and their properties
- Summary, Conclusions and Outlook



What is SCR ?

- SCR stands for Selective Catalytic Reduction
- Wideley employed technology for removal of NOx out of exhaust gases
- NOx is converted by ammonia (NH3) into water and nitrogen according to the reaction

$$4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \implies 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$
$$8 \text{ NH}_3 + 6 \text{ NO}_2 \implies 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$

What is SCR ?

terre

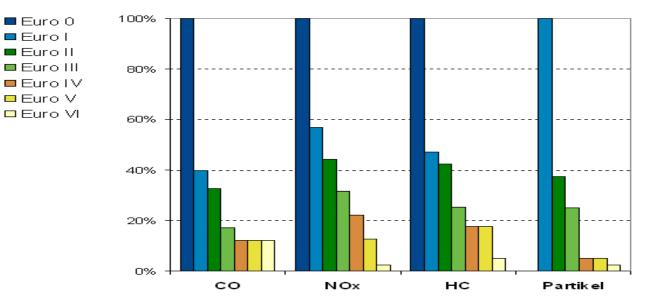
- Technology known already since the 1970s; applied at stationary sources (eg. fossil fuel power plants)
- Technology was successfully adopted to stationary diesel engines by substitution of ammonia by urea (urea-SCR), which is a precursor for NH3

 $(NH_2)_2CO + H_2O \implies 2NH_3 + CO_2$

Nowadays urea-SCR is an emerging technology for the NOx reduction of exhausts of diesel engines of heavy-duty and light-duty vehicles as well as passenger cars and non-road applications

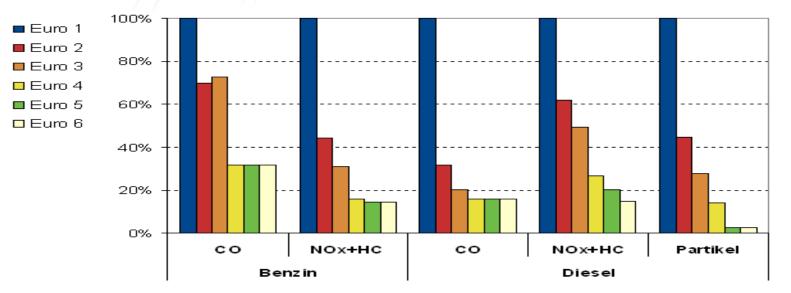
Driving Forces for promoting technologies for exhaust gas emissions = worldwide emission standards

http://www.altenergystocks.com/archives/2010/03/


	2007	2008	2009	2010	2011	2012	2013	2014
U.S.	US-07 CVS	Locomotive & Marine Tiers 0-2	CA CVS Retrofit**	US-10 CVS On-Highway Motorcycle Rule Tier 2	US off-road diesel Tier-4A*	Locomotive & Marine Tier 3 CA LEV III	US Tier 3 LVS** R.I.C.E. Stationary** Locomotive & Marine Tier 4*	US off-road diesel Tier-4B*
EUROPE		EU Euro-5 CVS	EU Euro-5 LVS*	Netherlands Marine OE/Retrofit	EU off-road Stage 3B*	EU CO2/GHG 120g PM # LVS	EU-6 CVS**	EU off-road Stage 4 EU Euro-6 LVS*
CHINA	Euro-3 LVS	Euro-3 Two-wheel Beijing Euro-4 LVS	Beijing CVS Yellow Label		Euro-4 LVS/CVS	Euro-5 LVS*	-	Euro-5 CVS**
JAPAN		Cold-start restrictions LVS	Japan-09 LVS/CVS		NO _X reductions	egulation	JP-13 CVS	
BRAZIL			US Tier 2 LVS* Motorcycle Rule*	icter En	NO _X reductions LVS ISSION R	Euro-5 CVS		
RUSSIA		Euro-3 LVS	SI		Euro-4 LVS/ CVS			Euro-5 CVS
INDIA		-		Euro-4 LVS* & motorcycle rule*	Euro-4 CVS 11 Cities			

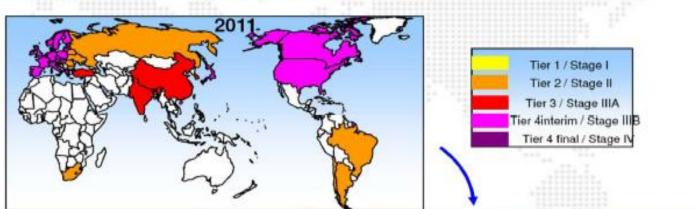
Future Emission Limits Heavy Duty Diesel (Europe)

Source: LUBW, Baden-Württemberg



	gültig ab *	CO	NOx	HC	Partikel			
		in g/kWh						
Euro 0	1988/90	12,3	15,8	2,6	-			
Euro I	1992/93	4,9	9	1,23	0,4			
Euro II	1995/96	4	7	1,1	0,15			
Euro III	2000/01	2,1	5	0,66	0,1			
Euro I∨	2005/06	1,5	3,5	0,46	0,02			
Euro V	2008/09	1,5	2	0,46	0,02			
Euro VI	2012/13	1,5	0,4	0,13	0,01			

Future Emission Limits Passenger Cars (Europe) Source: LUBW, Baden-Württemberg


	gültig ab	Benzin			Diesel					
		CO	NOx	HC	CO	NOx	HC+NOx	Partikel		
					in g/km					
Euro 1	1.7.1992	3,16	HC+NC	HC+NOx 1,13			1,13	0,18		
Euro 2	1.1.1996	2,2	HC+N	HC+NOx 0,5			0,7	0,08		
Euro 3	1.1.2000	2,3	0,15	0,2	0,64	0,5	0,56	0,05		
Euro 4	1.1.2005	1,0	0,08	0,1	0,5	2,25	0,3	0,025		
Euro 5	1.9.2009	1,0	0,06	0,1	0,5	0,18	0,23	0,005		
Euro 6	1.9.2014	1,0	0,06	0,1	0,5	0,08	0,17	0,005		

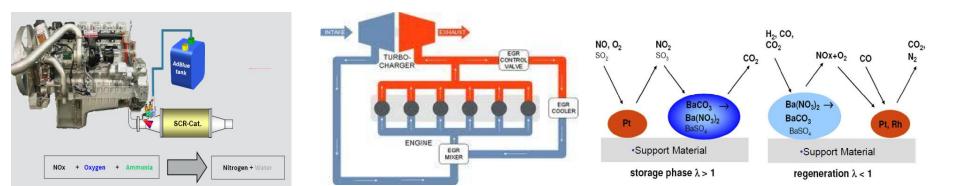
Future Emission Limits NON Road

Estimated off-highway emission legislation in the future

Nearly all off-highway engine markets will be regulated within 10 years.

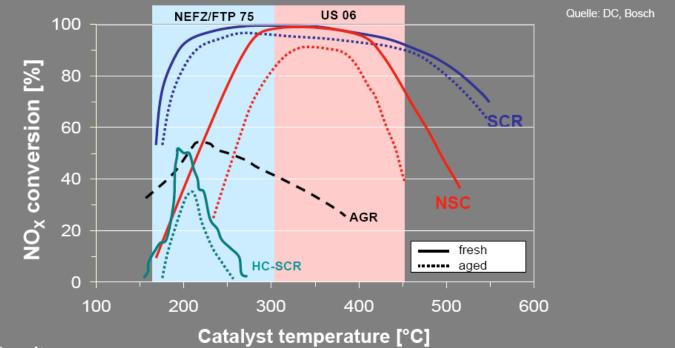
2016

Source: AGCO SISU POWER, Dez. 2008



Technologies for NOx removal in mobile application

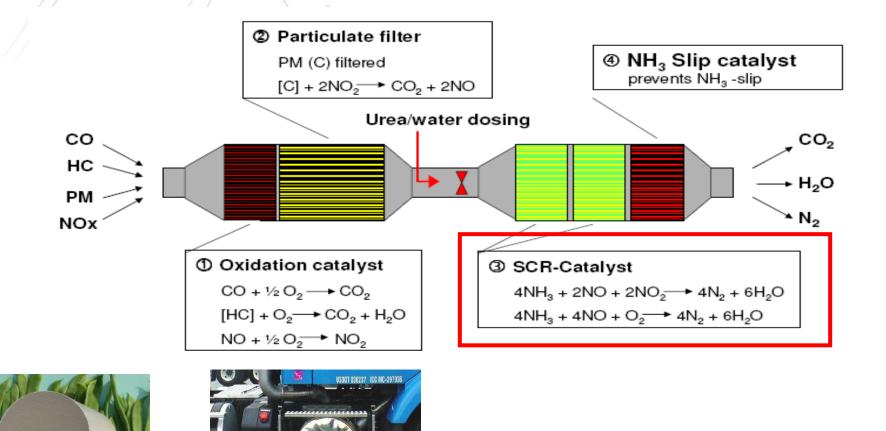
Selective Catalytic Reduction by NH3 (NH3-SCR)


(NH3 generated out of urea solution (Ad Blue) on board of the vehicle)

- Selective Catalytic Reduction by CH (CH-SCR)
- **EGR** (Exhaust Gas Recirculation)
- NOx Storage Technology (Nox Absorber, NOx Trap, Lean NOx Trap)

NOx Control – Technologies and their Efficiencies

Results:


nterre

- SCR system shows higher efficiency as NO_x adsorber
- SCR system operates in a wide temperature range
- SCR technology: Robust method over running time
- Low influence of fuel quality (e.g. sulphur amount) on SCR methods.

Main Components of an Exhaust Gas Aftertreatment System (Diesel)

TREIBACHER INDUSTRIE AG

SCR Catalysts – Materials applied in SCR Catalysis

Vanadium Oxide based Catalysts

TiO2 / WO3 : (SiO2) based materials doped with Vanadium-Oxide Species, applied as

FULL CATALYST (FULL EXTRUDATE)

COATED CATALYST

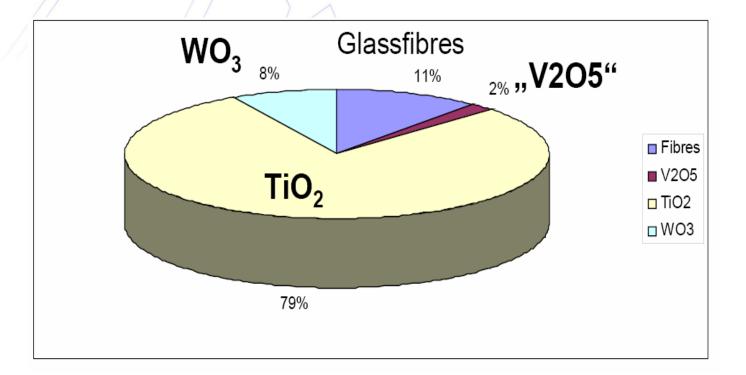
Heavy Duty Diesel and Non Road Applications

Disadvantages:

Interreg

Health concern on possible release of V2O5 out of catalyst

Not stable above 650° C (dramatic loss on activity > 650° C)


Not applicable downstream a DPF

TREIBACHER INDUSTRIE AG Innovation is our tradition.

Composition of commercial TiO2/WO3 / V-Oxid "Full Catalyst" (Extrudate)

Source: 6.CTI Forum Stuttgart, 2010

Interreg

Classification of V2O5

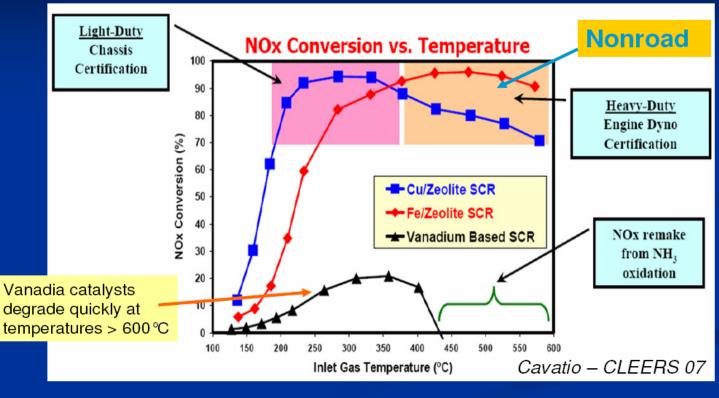
Classification	n according to Directive 67/548/EEC or Directive 1999/45/EC c
R48/23:	Toxic: danger of serious damage to health by prolonged exposure through inhalation.
🗙 Xn; Ha	rmful
R20/22-63:	Harmful by inhalation and if swallowed. Possible risk of harm to the unborn child.
🗙 Xi; Irrit	tant
R37-41:	Irritating to respiratory system. Risk of serious damage to eyes.
N; Dan	gerous for the environment
 R51/53:	Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

SCR Catalysts – Materials applied in SCR Catalysis

Zeolites (Fe- und Cu-Zeolite) applied as COATED CATALYST (Heavy duty, passenger car, non road)

Disadvantages:

sensitive against hydrothermal ageing


Sulfur sensitive

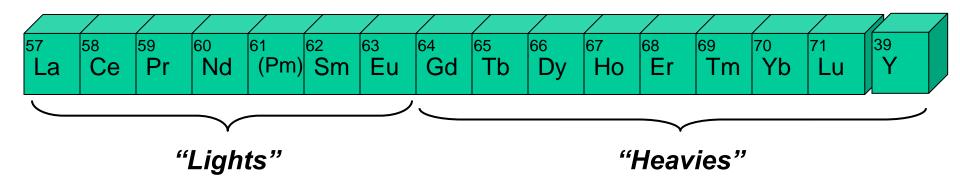
Selectivity problems (N2O formation particularly Cu-Zeolite)

Costs >> compared to Vanadium based SCR catalyst

Catalysts Aged 64 hrs @ 650 °C*

*Typical temperature exposure during active DPF regeneration

www.treibacher.com


Interre

Rare Earths in SCR

How may Rare Earths Contribute to the Application in SCR ?

Benefits of Rare Earths in SCR

Combination of: Rare Earth(s) + Iron + Vanadium =

Environmental friendly non toxic Vanadium based Compounds ,so called ,, Iron- Rare Earth(s)- Vanadates" ,,Fe(x)RE(1-x)VO4" (x = 0 - 1)

applicable as dopants for making SCR catalysts

Benefits of Rare Earth (Fe) Vanadates in SCR formulations

Properties of SCR Catalyst (TiO2 based materials)

Contains environmental friendly Rare Earths based Vanadate dopants Rare Earth Vanadates considered not to be detrimental

Rare Earths in the Vanadate contribute to significant higher thermostability (up to approx. 800°C) compared to V-Oxide based SCR Materials (stable up approx. 650°C)

High catalytic activity remains after severe hydrothermal Ageing (700°C/ 100 hrs)

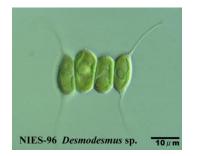
Rare Earth (Fe) Vanadates in SCR formulations

Properties of SCR Catalyst (TiO2 based materials)

High selectivity, no N2O formation in SCR reaction (N2O = hazardous gas, emission will be most likeley regulated in future)

Insensitive against Sulfur, applicable for S-containing fuel (Emerging countries !)

Provides cost efficient alternative to other SCR materials such as Zeolites and Mixed Oxides.


Toxicological Investigations on Rare Earth Vanadates

Bioeffect Screening

In vitro assays on various cells (eg embryonic tem cells in stead of animal testing)

aquatic organisms (Exotoxicological test against Daphnia and Desmodesmus)

Toxicological Profile of Rare Earth Vanadates compared to V2O5

	Cytotoxicity	Embryotoxicity	Genotoxicity
V2O5	pos.	pos.	negative
RE-Vanadate (REVO4)	negative	negative	negative
	-		
Fe-RE-Vanadate (Fe(0,5)RE(0,5)VO4)	negative	negative	negative

Ecotoxicological Test of Vanadates in comparison to V2O5 (Test Item Daphnia Magna)

		24h EC 50 mg/Liter	24 h EC 100 mg/Liter	NOEC 48h mg/Liter	48h EC 50 mg/Liter	48 h EC 100 mg/Liter	Test Procedure	
V2O5		j		g	g	g	OECD 202/EUC2/EN ISO 6341	
Sample	dissolved	dissolved	dissolved	dissolved	dissolved	dissolved		
Result	2,2	4,6	> 100	0,22	1,38	4,6		
RE-Vanadate (REVO4)								
Sample	dissolved	dissolved	dissolved	dissolved	dissolved	dissolved	OECD 202/EUC2/EN ISO 6341	
Result	100	> 100	> 100	100	> 100	> 100		
Sample (> 1g Liter !!)	Succession	Suspension	Suspension	Suspension	Suspension	Suspension	OECD 202/EUC2/EN ISO 6341	
Result	1000	> 1000	> 1000	> 1000	> 1000	> 100	0200 202/2002/211130 0341	
Iron-RE-Vanadate (Fe0,5RE0,5VO4)								
Sample	dissolved	dissolved	dissolved	dissolved	dissolved	dissolved	OECD 202/EUC2/EN ISO 6341	
Result	100	> 100	> 100	100	> 100	> 100		
EC50 higher than a conc. of	100 mg/	Liter are	consider	ed to be n	on toxic t	o the envir	onment !!	
K2Cr2O7 - Reference		0,6 - 2,1						
		ED NO EFF	ECT					
NOEC	CONCEN	_						
FC 50	HALF MA	XIMUM EF	FECT					
EC 50 EC 100		_	CONCENTE				light	
	MAXIMUM EFFECT CONCENTRATION							

Ecotoxicological Test of Vanadates in comparison to V2O5 (Test Item Desmodesmus subspicatus)

	NOEC 72h mg/Liter	72h EC 50 mg/Liter	72h EC 100 mg/Liter		Test Procedure
V2O5					
Sample	dissolved	dissolved			OECD 201/EUC3/EN ISO 8692
Result	2,2	1,67	na		
RE-Vanadate (REVO4)					
Sample	dissolved	dissolved	dissolved		OECD 201/EUC3/EN ISO 8692
Result	100	> 100	> 100		
Iron-RE-Vanadate (Fe0,5RE0,5VO4) Sample Result	dissolved 100	dissolved > 100	dissolved > 100		OECD 201/EUC3/EN ISO 8692
NOEC EC 50 EC 100	HALF MA	XIMUM EFF	CT CONCEN ECT CONCE ONCENTRAT	NTRATION	0000
					NIES-96 Desmodesmus sp. 10 µ

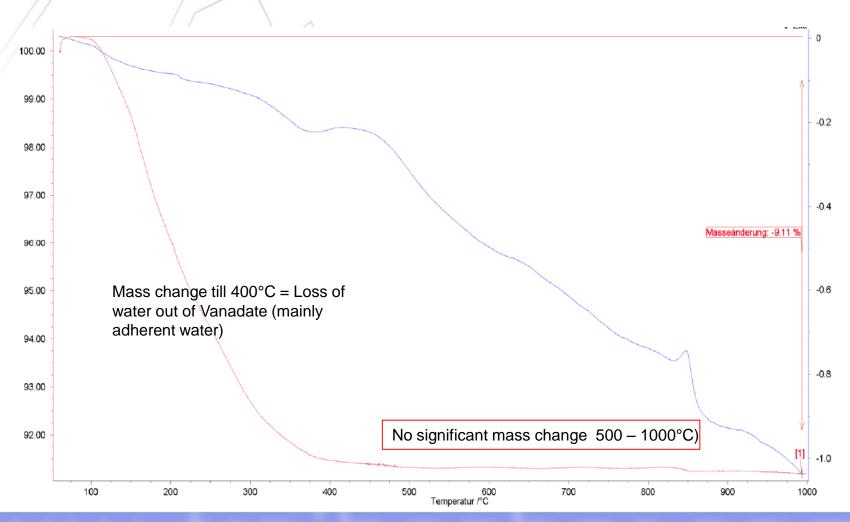
EC50 higher than a conc. of 100 mg/Liter are considered to be non toxic to the environment !!

www.treibacher.com

Additional Properties of "Fe(x)RE(1-x)VO4"

Stable up to > 1000°C without any release of V2O5 according to the chemical reactions

[T= > 600°C]


(RE = Ce, Pr, Sm, Er, Dy, Gd, Tb)

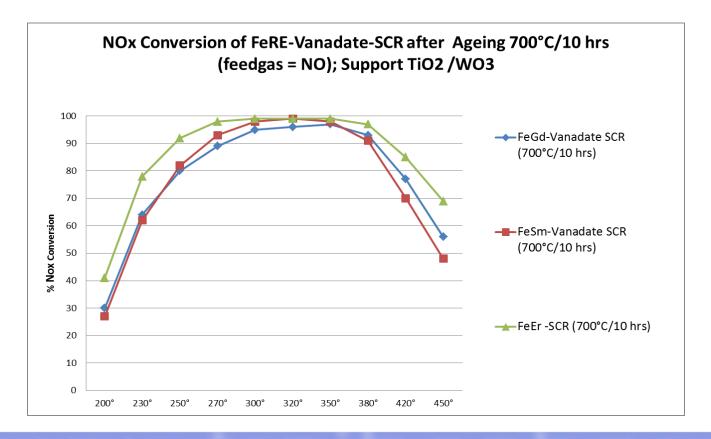
Stability of Rare Earth Vanadates confirmed by Differential thermoanalysis

DTG of a FeRE-Vanadate

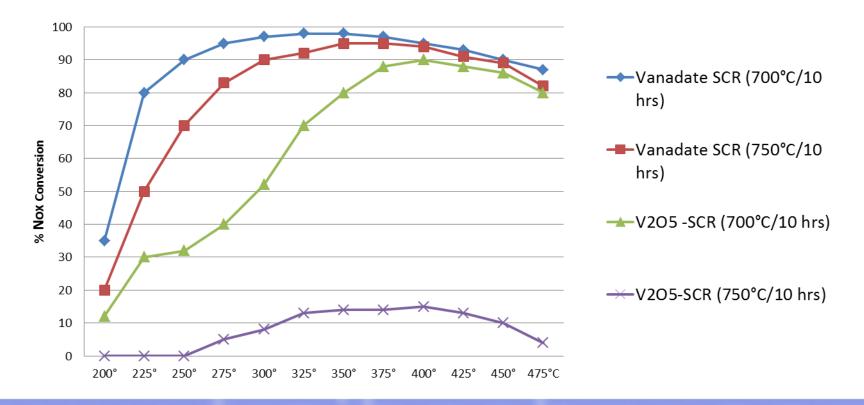
Interre

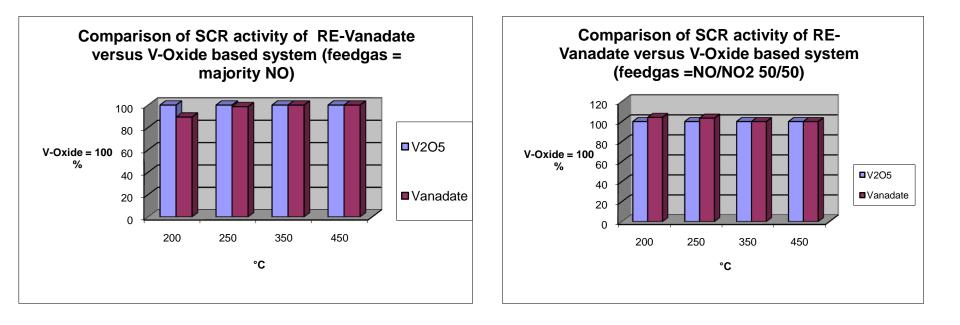
Functional Testing of SCR catalysts formulations – different conditions

- based on **powders** in a microreactor
- based on coated honeycomb

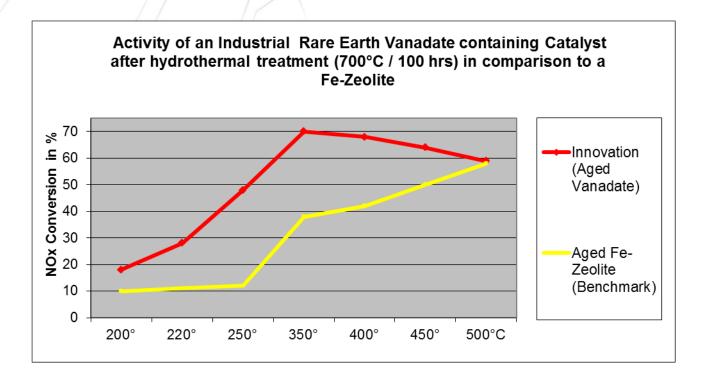

terre

- based on "full catalyst" (Extrudate)
- Test conditions: various types of feedgas (NO, NO/NO2, NO2)
- Ageing: dry ageing (powders) and hydrothermal ageing (real catalysts)

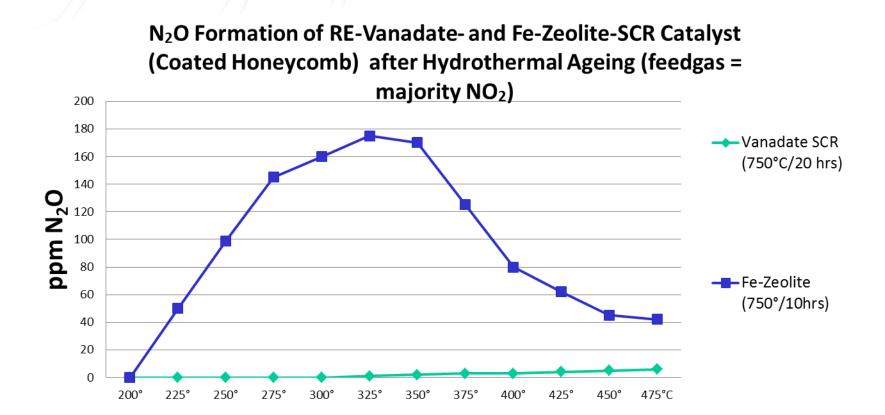

Catalytic Activity of various Rare Earth Vanadate-SCR Catalysts (Support = TiO2/WO3/SiO2) Conditions: SV [h⁻¹] = 180.000, feedgas = NO = 100%, powder sample


Catalytic Activity after Hydrothermal Ageing of Catalyst – V2O5-SCR versus Rare Earth Vanadate-SCR (Support = TiO2/WO3/SiO2 based) Conditions: Washcoated catalyst, SV [h⁻¹] = 30.000, feedgas = NO/NO2 = 50/50

Catalytic Activity –V2O5 -SCR versus Rare Earth Vanadate - SCR – Conditions: Industrial Catalyst, 10 ppm NH3 slip, SV [h-1] = 60.000

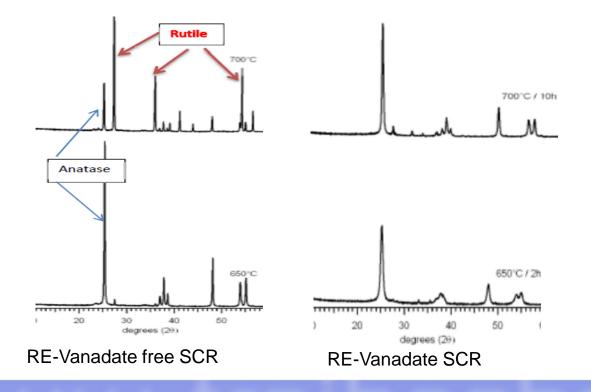

Catalytic Activity –V2O5 versus Rare Earth Vanadate – Industrial Catalyst (Support = TiO2/WO3) Conditions: 10 ppm NH3 slip, SV (-1) = 60.000

Catalytic Activity of a Rare Earth Vanadate based Catalyst after severe hydrothermal ageing



Source: 6. CTI Forum SCR Systems, Stuttgart 5.- 8.7.2010, CERAM Frauenthal

N₂O Formation – Fe-Zeolite versus Vanadate-SCR



Thermal Stability of Vanadat containing SCR formulation (TiO2/WO3 based)

Thermal stability is attributed to the inhibition of the formation of Rutile out of Anatase caused by the Rare Earths

Summary and Conclusions

Rare Earths in a TiO2 based SCR system contribute siginifcantly

to a postive toxicological behaving (SCR catalyst and dopant !)

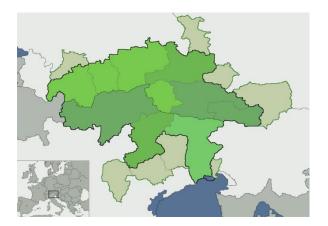
to a significant higher thermostability combined with a remaining high catalytic activity after hydrothermal ageing

to a significant decrease of the greenhouse gas N2O in the SCR reaction

Summary and Conclusions

The catalyst and the Vanadate-based dopants applied in it are environmetal friendly

Catalysts are applicable either as full catalysts or as coated catalyst


Application areas: On-Road and Non-Road Applications Markets: globally

Acknoledgements

The work is partly supported in the frame of Interreg IV in a cooperation between Treibacher Industrie AG (Austria) and the Department of Science and Technology of the University of Udine (Italy)

Thank you for yor attention !

TREIBACHER INDUSTRIE AG A-9330 Althofen, AUSTRIA Tel +43 4262 505 -0 Fax +43 4262 2005 treibacher@treibacher.com www.treibacher.com