

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Institut für Komplexe Materialien (IKM)

Neue Entwicklungen im Bereich der metallischen Massivgläser

Mihai Stoica

Leibniz-Institute for Solid State and Materials Research Dresden

Institute for Complex Materials (ICM)

New achievements in the area of Bulk Metallic Glasses (BMGs)

Mihai Stoica

Materials Research Dresden

Organization

Executive board										
Scientific Director			Administrative Director							
Prof. Dr. L. Schultz		Dr. h.c. R. Pfrengle								
Institutes										
Institute Solid S Researe	e for tate ch	Institute for Metallic Materials	Institute for Complex Materials	Institute for Integrative Nanosciences	Instit Theo Solid Phys	ute for retical State ics				
Prof. Dr. B. Büchn	er	Prof. Dr. L. Schultz	Prof. Dr. J. Eckert	Prof. Dr. O.G. Schmidt	Prof. D J. van)r. den Brink				

Divisions

Research Technology

Administration

Dr. D. Lindackers

Dipl.-Kffr. F. Jaeger

Leibniz-Institute for Solid State and

Materials Research Dresden

Research Areas

- Theoretical basis
- Preparation
- Properties and interesting alloy systems
- Applications

Glass Matrix Composites

Silicate glass (window glass)

- the oldest from 7000 B.C.
- transparent
- hard and brittle

Metallic glass

- massive first time in 1989
- metallic luster
- not transparent
- very hard
- good elasticity, partially deformable

but: different atomic structure! amorphous = not ordered

Nonferrous alloy systems

Mg-Ln-M (lanthanide metal; M: Ni,Cu,Zn		
Ln-Al-TM (TM: Fe,Co,Ni,Cu)		
Ln-Ga-TM	1989	
Zr-Al-TM	1990	
Ti-Zr-TM	1993	
Zr-Ti-TM-Be	1993	
Zr-(Ti,Nb,Pd)-Al-TM	199	
Pd-Cu-Ni-P	1990	
Pd-Ni-Fe-P	1990	
Pd-Cu-B-Si	1997	
Ti-Ni-Cu-Sn	1998	
Cu-(Zr,Hf)-Ti	200	
Cu-(Zr,Hf)-Ti-(Y,Be)	200	
Cu-(Zr,Hf)-Ti-(Fe,Co,Ni)	2002	

Ferrous alloy systems

8	Fe-(Al,Ga)-(P,C,B,Si,Ge)	1995
9	Fe-(Nb,Mo)-(Al,Ga)-(P,B,Si)	1995
9	Co-(Al,Ga)-(P,B,Si)	1996
0	Fe-(Zr,Hf,Nb)-B	1996
3	Co-(Zr,Hf,Nb)-B	1996
3	Ni-(Zr,Hf,Nb)-B	1996
5	Fe-Co-Ln-B	1998
6	Fe-Ga-(Cr,Mo)-(P,C,B)	1998
6	Fe-(Nb,Cr,Mo)-(C,B)	1999
7	Ni-(Nb,Cr,Mo)-(P,B)	1999
8	Co-Ta-B	1999
1	Fe-Ga-(P,B)	2000
1	Ni-Zr-Ti-Sn-Si	2001
2	Ni-(Nb,Ta)-Zr-Ti	2002
	Fe-Si-B-Nb	2002
	Co-Fe-Si-B-Nb	2002
	Ni-Si-B-Ta	2002

1. No translational symmetry Random atomic distribution Prefered neighbour links short range order Type of atoms chemical short-range order Amount of, distances, angle relations: physical short-range order Na⁺ $\bigcirc \circ$ () o

Theoretical basis: glassy state

11

Preparation of BMGs: inexpensive casting

 \oslash 3-6 mm \times 50 mm

 \varnothing 3-6 mm \times 75 mm

 \varnothing 3-6 mm \times 75 mm

 \varnothing 10 mm \times 180 mm

13

mechanical alloying / milling

compaction

planetary mill

hot press

Preparation of BMGs: thermoplastic deformation

- amorphous granules or semifinal product
- plastic deformation above T_g

Preparation of BMGs: thermoplastic deformation

 $Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3}$

J. Schroers et al.: The Superplastic Forming of Bulk Metallic Glasses; APL 87, 061912, 2005

16

Preparation of BMGs: thermoplastic deformation

Preparation of BMGs: powder injection molding

Processing steps may be reduced from 8 to 4 (50 %) by using metallic glasses as starting materials !!

Grünteil

Braunteil

Sinterteil

für Festkörper- und Werkstoffforschung Mechanical properties (static)

Leibniz-Institut

Dresden

G.Y. Wang et al.: Intermetallics 12 (2004)

Magnetic properties (DC)

R. Boll: Weichmagnetische Werkstoffe, VAC GmbH, Ed. Siemens AG (1990)

Alloy	amorphous up to	<i>E</i> [GPa]	σ _f [MPa]	ε _y [%]
$Mg_{65}Cu_{7.5}Ni_{7.5}Zn_5Ag_5Y_{10}$	9 mm Ø	39	490-650	1.7
$Cu_{54}Zr_{27}Ti_9Be_{10}$	5 mm $arnothing$	146	2500	2.0
$Ti_{50}Cu_{20}Ni_{24}Sn_3B_1Si_2$	4 mm \varnothing	110	2100	2.0
$Zr_{52.5}Ti_5Cu_{17,5}Ni_{14,6}AI_{10}$	5 mm Ø	70-90	1700-1800	2.0-2.7
$Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$	few cm			
$Ni_{53}Nb_{20}Ti_{10}Zr_8Co_6Cu_3$	3 mm arnothing	140	3010	2.4
Co ₄₃ Fe ₂₀ Ta _{5,5} B _{31,5}	2 mm arnothing	268	5185	< 2
$(Fe_{44.3}Cr_5Co_5Mo_{12.8}Mn_{11.2}C_{15.8}B_{5.9})_{98.5}Y_{1.5}$	12 mm Ø	257	3000	< 2

I = 50 mm $\varnothing = 10 \text{ mm}$

high mechanical tensions

23

- high strength, high elasticity
- excellent soft magnetic properties
- increased corrosion resistance
- thermoplastic deformable (no shrinkage, good formability)
- extremely smooth surfaces

M. Telford, Materials Today (2004)

- reduced reproducibility (purity of the elements, preparation parameters)
- relatively high price
- very brittle in tension

24

Applications- possible fields

Applications- examples

taken from:

A. Inoue, N. Nishiyama, MRS Bulletin 32 (2007); www.liquidmetal.com www.arcmg.imr.tohoku.ac.jp

Applications-examples

taken from:

A. Inoue, N. Nishiyama, MRS Bulletin 32 (2007); www.liquidmetal.com www.arcmg.imr.tohoku.ac.jp

Technology development

amorphous semi-finite materials, amorphous granules

thermoplastic forming, injection molding

Fabrication of small, complicated parts for high demands

BMG phase separation

Ni₅₄Nb₂₃Y₂₃ N. Mattern: Scripta Mater. (2007)

Zr_{64.13}Cu_{15.75}Ni_{10.12}AI₁₀ Science (2007) W.H. Wang's group

Amorphous matrix composites: in-situ

 $(Cu_{50}Zr_{50})_{100-x-y}Ti_xAI_y$; S. Pauly, PhD thesis (2010)

*Fe*₇₇*Mo*₅*P*₉*C*_{7.5}*B*_{1.5} *S.F. Guo, Scripta Mater. (2010)* $(Mg_{0.65}Cu_{0.075}Ni_{0.075}Zn_{0.05}Ag_{0.05}Y_{0.1})_{100-x}Fe_x$ H. Ma, APL (2003)

Amorphous matrix composites: ex-situ

Zr₄₁Ti₁₄Cu_{12.5}Ni₁₀Be_{22.5} + C W.H. Wang, Mater. Letters (2000)

32

乎

Pure AI + BM AI₈₅Y₈Ni₅Co₂ glassy ribbons (30 and 50 vol.%)

Pure AI + BM Zr₆₅Ag₅Cu_{12.5}Ni₁₀Al_{7.5} glassy powders

S. Scudino, several works 2006-2010 PSS-RRL, Scripta mater., etc.

J. Eckert, T. Gemming, H. Wendrock, U. Kühn, N. Mattern, J. Das, S. Pauly, S. Scudino, S. Venkataraman, M. Calin, I. Kaban, S.M. Gorantla, A. Gebert, F. Gostin, S. Roth, L. Schultz, J. Bednarcik, G. Vaughan

M. Frey, H.-J. Klauß, S. Donath, B. Bartusch, H. Schulze

A.L. Greer, A.R. Yavari, G. He, U. Köster, D.J. Sordelet, L.Q. Xing, Z.F. Zhang, W.L. Johnson, A. Inoue, M.D. Baro, Y. Li, K. Lu, E. Ma, T.G. Nieh, S.K. Roy W.H. Wang,

Thank you for your kind attention !

Vielen Dank für Ihre Aufmerksamkeit !