Wasserstoffproduktion durch lichtinduzierte Wasserspaltung

Wolfram Jaegermann FG Oberflächenforschung, Institut für Materialwissenschaft und Center of Smart Interfaces TU Darmstadt

TECHNISCHE

UNIVERSITÄT DARMSTADT

Inhalt: Solar erzeugter H₂

Grundsätzliche Überlegungen

Thermodynamische Aspekte

Kinetische Aspekte

Realisierungsstrategien

Schlussfolgerungen

Experiment p-GaAs/H₂SO₄/Pt

Energy Resources used "Today"

Energy scenarios

(Wissenschaftlicher Beitrat der Bundesregierung Globale Veränderungen, 2003, www.wbgu.de)

Designer Fuel Cycle: H₂ or CH₃OH or ...

Basic Device Structure for Photoelectroytic H₂-Production

Direct hydrogen production by photoelectrolysis

Photovoltaic converter requirements (Black box approach)

Optimisation of performance:

•Maximize photovoltage $U_{ph} < {}_{n}E_{F}^{*} {}_{p}E_{F}^{*}$

•Maximize photocurrent iph

Optimisation of performance:

•Minimum photovoltage U_{ph} > E_{red}- E_{ox}

•Maximize photocurrent iph

•Minimize overvoltage h

•Photovoltage Uph equivalent to chemical potential of electron-hole pairs $\Delta \mu$ must be larger than difference of H₂O oxidation/reduction potential:

 $\Delta \mu = {}_{n}E_{F}^{*} - {}_{p}E_{F}^{*} = kT \ln n^{*}p^{*}/n_{i}^{2}$

•For high rates the cathodic and anodic overvoltages must also be overcome: cathodic overpotential η_c < 0.1 V anodic overpotential η_A < 0.4 V

empirical rule: $U_{ph} < E_G - 0.4 \rightarrow E_G > 2.2 \text{ eV}$

Expected PEC conversion efficiencies

One semiconductor layer:

Bandgap E_G: 2.0 - 2.5 eV Efficiency η: 22 – 15 %

Water spitting by light using photoelectrochemical solar cells is very promising

Cheap thin film PV technology seems feasible

Optimisation of new wide bandgap semiconductors and coupling with advanced catalysts needed

Possible devices structure: one absorber

Photoelectrolytic solar cell: one semiconductor

Possible devices structure: two absorbers

Photoelectrolytic solar cell: n-doped semiconductors

• Transfer of 4 holes needed for evolution of 1 molecule O₂

• Decomposition reaction of semiconductor favoured

Photoelektrolysezellen

Pt deposition on p-GaP under H_2 -evolution, V_D =-2 V, 5 s

10.22 nm.

PVD of Pt on p-GaP

8.75 nm

0.00 nm

Status of research

ewable Energy Laboratory

World Record Photoelectrolysis Device Science, April 17 1998.

- Direct water electrolysis.
- Unique tandem (PV/PEC) design.
- 12.4% Solar-to-hydrogen

Experimental Cell

Advantage: high efficiency of 12% Disadvantage : non-oxide (stability) semiconductor Expensive H₂Cost: >\$13/kg Looking for cheap and stable materials

Photoelectrolytic solar cell: n-doped oxide semiconductors

• No kinetic limits: $E(\cdot OH/H_2O)$: 2.7 V vs NHE $E(H_2O_2/H_2O)$: 1.8 V vs NHE

Bandgap engineering needed

Bandgap engineered oxide semiconductors

- Bandgap Reduction by Anion and Metal Substitution
- Bandgap < 3 eV: absorption in visible region due to localized defect levels

• Kinetic limits: E(.OH/H₂O): 2.7 V, vs NHE

- Low effciency
 - hopping transport (low mobility)
 - reduces charge carrier separation

for μ = 10⁻² cm²/Vs and t = 10⁻⁸ s L_{Diff} = 15 nm << 3/ α

Possible solutions: Oxides nanoparticles

• Nano-SC-Particles: size smaller than diffusion lengths:<15 nm

Bandgap Engineering reduction of bandgaps by additional defect levels (doping)

• Tranport engineering Engineered diffusion pathways of electron-hole pairs (doping gradients)

Nano-Catalysts

- efficient H₂ production
- efficient O₂ evolution

Perspectives of Janus structures

Oxide heterostructures

Selective charge transfer possible at the

semiconductor electrolyte interface ?

Preparation of SnO_2 and SnO_2 @ZnO nanoparticles

First results on heterostructures

Photosynthesis

Photosynthesis

17. Mai 2011 | Fachbereich 11 | Oberflächenforschung | Prof. Jaegermann | 28

Styring, Uppsala

Electrolysis driven by solar cells: Reference technology

η< 8 % (PV:15% x EL:50%)

Overall theoretical efficiency: η < 15% (PV:20% x EL:70%)

Hydrogen production by electrolysis

Anode: $4 \text{ OH}^{-} \longrightarrow \text{O}_2 + 2 \text{ H}_2 \text{O} + 4 \text{ e}^{-}$ Cathode: $4 \text{ H}_2 \text{O} + 4 \text{ e}^{-} \longrightarrow 2 \text{ H}_2 + 4 \text{ OH}^{-}$

 $Overall: 2H_2O \longrightarrow 2H_2 + O_2$

Electrolyte composition: Pure water (σ < 5 µS/cm) + 30% KOH

Electrocatalysis: Research needs

Size and composition effects and catalyst/support interaction

Specifically designed electrocatalysts

Energie Effizienzen für H₂ Produktion

- Photosynthetische Membran: $\eta < 7\%$ (theoretischer Wert)
- Biomimetische Systeme: $\eta < 1\%$ (praktischer Wert)
- •Solarzelle und Elektrolyseur: $\eta < 15\%$ (PV:20% x EL:70%)
- $\label{eq:photoelektrolyseur: $\eta < 20\%$ (theoretischer Wert, $E_G > 1.8eV$ $\eta < 15\%$ (?, erhoffter realistischer Wert)$ }$

<u>Aber</u>

H₂ braucht effiziente Speicherung: Umwandlung zu CH₃OH

Solare Brennstoffe (Desertec)

Zusammenfassung und Schlussfolgerungen

- SolarFuels ergo Brennstoffe aus erneuerbaren
 Primärenergiequellen sind eine vielversprechende
 Perspektive für eine nachhaltige Energiewirtschaft
- Biomimetische Ansätze weisen (noch?) zu geringe Wirkungsgrade auf
- Photoelektrolyse mit anorganischen Photovoltaik-Systemen weisen die besten Perspektiven auf
- Es gibt noch maßgebliche materialwissenschaftliche und bauelementbezogenen Herausforderungen, die einen interdisziplinären Forschungsansatz benötigen

