

Oberflächenanalytik mit Röntgen-Photoelektronenspektroskopie-Technologie und Applikation

Definitionen - Was ist eine Oberfläche?

Schematische Darstellung

Dünne Filme über Abtrag

Warum brauchen wir ein Vakuum?

- zur Minimierung der Anzahl der Kollisionen zwischen Elektronen und Gasmolekülen
 - schützt vor Signalverlust
- Zum optimalen Betrieb der Quellen
 - keine Oxidation des Filaments
 - Minimierung der Gasadsorption auf der Oberfläche, die eine Kontamination bewirken würde

<u>Druck/mbar</u>	Zeit für die Ausbildung einer Monoschicht
10 ⁻³	0,003 Sekunden
10 ⁻⁶	3 Sekunden
10 ⁻⁹	3000 Sekunden

Der XPS-Prozess

Röntgen-Photonenenergie = hv

Anregung der Probe durch Röntgenstrahlung

- bekannte Röntgenenergie Al kα (1486.6eV)
- Ein Röntgenphoton kann Energie auf ein Elektron übertragen
- Das Elektron wird aus dem Atom herausgeschlagen
 - Die kinetische Energie KE (Geschwindigkeit) des Photoelektrons hängt ab von:
 - der Bindungsenergie des Atoms (BE)
 - der Photonenenergie des Röntgenstrahls (hv)
 - Das Spektrometer mißt die kinetische Energie des Elektrons

• Wir können die Bindungsenergie aus der kinetischen Energie berechnen:

BE = hv - KE

Herausgeschlagenes Photoelektron

- BE hängt ab von:
 - Art des Atoms (Elementinformation)
 - Oxidationszustand (chemische Information)

Was messen wir?

- Die aus XPS-Messungen erhältliche Information umfaßt:
 - Elementzusammensetzung
 - Welche Elemente sind da? Alle Elemente außer H erfaßbar
 - Elementquantifizierung
 - Wieviel eines Elementes ist da? (>0,05 At% f
 ür die meisten Elemente erfa
 ßbar)
 - Information über den chemischen Zustand (Hochauflösung)
 - Information über die Zusammensetzung
 - Information über die Stöchiometrie
 - Information über den Oxidationszustand
 - Information über den Bindungszustand organischer und anorganischer Substanzen
 - Information über die Oberflächenverteilung (Verteilungsbilder)
 - Ist die Probe homogen? Probenmuster, Defekte und Kontaminationen
 - Tiefeninformation (Zusammensetzungsprofile) 1nm einige μm
 - Was ist unter der Oberfläche? Wie dick ist die Schicht?

Escalab 250Xi

Präparationskammer

Heizen/Kühlen

Strahlengang

• Spektrenaufnahme

• Bildaufnahme

Übersichtsspektrum

 Bariumoxid Ba 3d 2.0 Intensity (Mcps) O KLL Ba MNN 0 1s Ba 4d Ba 4p Ba 4s C 1s 800 600 1000 400 200 0 0 **Binding Energy (eV)**

- Monochromatisierte Strahlung
- Spotgröße 500 µm
- Aufnahmezeit 10 s

Empfindlichkeit und Nachweisgrenze

Applikationsbeispiele

- Fluorocarbonpolymer
- Brennstoffzelle
- Solarzelle
- Wärmedämmglas
- Elektronisches Bauteil

- Chemischer Zustand: Verteilungsbilder
- Probenvorbereitung
 - Plasmastrukturiertes Fluorocarbon auf einem Substrat
 - Gitterförmige Metallmaske auf Substrat während der Plasmapolymerisation
 - Nach Abscheidung Entfernung der Maske

- Chemischer Zustand: Verteilungsbilder im Schnappschußmodus
- Analysebedingungen
 - Monochromatorfleck = 30 µm
 - C 1s im so genanntem 'Snapshot'-Modus aufgenommen
 - Maximal 128 Mappings im Energiebereich 278 bis 298 eV
 - Stage Mapping
 - Bildschrittweite 10 µm
 - Bildfläche 660 x 930 µm
- Aufnahme eines Spektrums mit wählbarer Energie- und Kanalbreite in jedem Pixel (max. 128 Kanäle)

- Ein Verteilungsbild für jede Bindungsenergie
- 10 der 128 möglichen Verteilungsbilder in der C 1s-Region

Verteilungsbilder chemischer Bindungszustände

- a) Verteilungsbild bei einer Bindungsenergie von 284,7 eV (C-C)
- b) Verteilungsbild bei einer Bindungsenergie von 291 eV (CF₂)
- c) Überlagerung beider Bilder

- Spektrum nach Aufsummierung der Spektren aller Pixel
- Substrat- und Fluorocarbon-Peaks deutlich erkennbar

Bereichsspektren

- Bilddekonvolution
- Bilddekonvolutionsalgorithmus kann angewendet werden
- Ergebnis: Verbesserung der lateralen Auflösung

Brennstoffzelle

- Grundprinzip: katalytische Reaktion von Wasserstoffgas und einem Oxidationsmittel
- Ableitung der generierten Elektronen über Separatoren

- Für Separatoren werden Metalle bevorzugt
- Wichtig: elektrische Eigenschaften und Kostensituation
- Stahl billig, aber hoher Kontaktwiderstand; Folge: Leistungsverlust der Zelle
- Zur Leistungsverbesserung Auftrag einer dünnen Goldschicht
- Qualität der Goldschicht: Dicke gegen Kosten
- Überwachung Qualität Goldschicht

Brennstoffzelle

 Qualitätsüberwachung mittels Tiefenprofilierung: Abtrag der obersten Probeschichten durch Ar-Ionen

Tiefenprofilierung eines Goldfilms auf Stahl a) Tiefenprofil über einen dicken Goldfilm b) Tiefenprofil über einen dünnen Goldfilm mit Cr-Migration aus dem Stahl in das Gold

Solarzelle

- Dünnschicht-Solarzellen auf Cu(In,Ga)Se2-Basis (CIGS): hervorragende Wirkungsgrade
- im Vergleich zu den etwa 200 mal dickeren Siliziumzellen kostengünstiger
- CIGS-Schicht durch simultanes oder sequentielles Verdampfen von Cu, In sowie Ga und Reaktion mit Se
- Problem: elektrische Eigenschaften der Solarzellen sind abhängig von der Herstellung genau definierter Schichten
- XPS-Profilierung zur Ermittlung des Schichtaufbaus und der chemischen Zusammensetzung

Aufbau einer Cu(In, Ga)Se2-Solarzelle im Elektronenmikroskopbild

Tiefenprofil

Ar^+ Ionenergie = 3 keV

Wärmedämmglas

- Beschichtung Glassubstrat mit Metallen oder Metalloxiden zur Kontrolle Wärmefluß
- Schichten um 100 200 nm
- Homogenität der Schichten wichtig für Wirkungsgrad

Wärmedämmglas

Tiefenprofil durch ein Wärmedämmglas, Tiefenermittlung über Messung gegen einen Standard

- Peaküberlappung Pd Au
- 2 mit Gold beschichte Bauteile sind mit einem dünnen Draht verbunden
- Fragestellung:
 - Kann der Draht mit XPS abgebildet werden?
 - Woraus besteht der Draht?

- Peaküberlappung Pd Au
- Gesamtpeak fast vollständig durch Au4d5/2 geprägt
- Pd3d3/2 (340 eV) überlappt stark mit Au4d5/2 (335 eV)
- Schwache Schulter im Tailing einziger Hinweis auf Pd
- Ausweichen auf andere Pd Linien unmöglich, da in dieser Probe auch dort Peaküberlappungen

- Parallel Imaging
- Verteilungsbilder f
 ür Au4f 7/2 (84 eV) und Pd3d3/2 (340 eV) erstellt
- Au-Verteilungsbild (oben) Au auf den Bauteilen deutlich sichtbar, aber kein Pd
- Pd-Verteilungsbild (unten): zeigt überwiegend Au (wegen Überlappung) aber es erscheint auch der Verbindungsdraht
- Draht nur in Pd-Verteilungsbild sichtbar, also enthält Draht kein Gold, aber Palladium
- Struktur von 2 µm Breite eindeutig zugeordnet

- Retrospektive Spektroskopie
- Bildung von Durchschnittsspektren aus zwei rechteckigen Bildbereichen
- Die Spektren aus allen Pixel dieser Bildbereiche werden addiert
- Bessere Statistik , besseres P/B-Verhältnis
- Linkes Spektrum Au4d5/2
- Rechtes Spektrum zeigt char rakteristische Peaks von Pd
- bei 340 eV: Pd3d3/2
- bei 334 eV: Pd3d5/2

Examples of E250Xi high spatial resolution imaging

Bildgebungskapazität

- Schnelle Verteilungsbildaufnahme von Strukturen <3μm
 - Echtzeitaufnahme von Rückstreuelektronen
 - Schnelle Verteilungsbildaufnahmen von chemischen Zuständen (Photoelektronen)
 - Kein Scannen der Analysatorlinse oder des Röntgenflecks
 - Keine komplexen Korrekturen von ungewollten Energieverschiebungen nötig
 - Quantitative Verteilungsbilder, ermöglicht Erstellung von Phasenverteilungsbildern
 - Extraktion von Spektren aus ausgewählten
 Flächen direkt aus dem Verteilungsbild möglich

Verteilungsbilder

- Beispiel: Strukturiertes plasmamodifiziertes Polystyren

 - Durch Plasmamodifikation können die Polymeroberflächen aktiviert werden
 - Beispiel: Polystyren mit O₂-Plasma unter Gittermaske behandelt

Bildinformation

- Jeder Pixel enthält ein vollständiges C1s Spektrum
- Nach der Akquisition können beliebige Flächen extrahiert werden.
 - Detektion sehr geringer Unterschiede im C1s Spektrum modifizierter und unmodifizierter Bereiche
 - In O₂-modifizierten Bereichen kein π-π* -Plasmon beobachtet

Schema der REELS Analyse bei unterschiedlichen Energien

- Reflected Electron Energy Loss Spectroscopy
 - Ergänzung zu XPS
 - ESCALAB 250Xi Flood Gun Betrieb zwischen 0 eV und 1000 eV
 - Peak mit kleiner Halbwertsbreite (~0.5 eV)
 - Keine weitere Ausstattung erforderlich (Standard bei E250Xi)
 - Elektronen energetisch genug für Anregung von Elektronenübergängen zwischen Valenzbändern
 - Informationstiefe mit 250 eV Strahlenergie ~0.9 nm
 - Bei Variation Primärstrahlenergie unterschiedliche Informationstiefen

REELS – Spektren von verschiedenen Polymeren

- REELS Information
 - Wasserstoffdetektion und –quantifizierung
 - REELS-Daten von Polymeren HDPE, PET, PMMA, Polystyrol (PS) und PTFE
 - Peak bei 1.8 eV Energieverlust durch Zurückfedern von Elektronen nach Kollision mit Wasserstoff in Polymeren
 - In PTFE schwaches Signal aus Oberflächenkontamination

[1] B. Lesiak et al. / Polymer 49 (2008) 4127–4132

Vielen Dank für Ihre Aufmerksamkeit!

