Anwendungspotential neuer Methoden der Mikroanalyse zur Bestimmung lokaler mechanischer Eigenschaften, der chemischen Zusammensetzung und der Mikrostruktur im Rasterelektronenmikroskop

Johann Michler

EMPA, Materials Science and Technology, Thun, Switzerland

Hanau, April 2012

Materials Science & Technolog

G

A

Laboratory for Mechanics of Materials and Nanostructures

outline

Introduction to scanning electron microscopy

FIBSIMS

AFM in SEM

stress & strain from EBSD

in-situ micromechanical testing

Applications of Scanning Electron Microscopy

Imaging

Orientation and crystal structure

Chemical composition

Structuring

Image Creation in SEM

Which type of signal?

From which volume does the signal come?

Coverage of the BSE and the PE and depth of the different signals in SEM:

- R: Coverage of the PE
- -T: Signal depth of the BSE

Application: Topography contrast

Application: X-rays distribution image

Application: Orientation distribution image

Electron backscatter diffraction diagram (EBSD):

Orientation map of electrolytically separated nickel

outline

Introduction to scanning electron microscopy

FIBSIMS

AFM in SEM

stress & strain from EBSD

in-situ micromechanical testing

Orthogonal ToF-SIMS

Nanomanipulators

3

SEM

FIB

BSE detector

SE detector -

0

retracted EDX

Orthogonal ToF-SIMS

Synchronization of the ToF pulser with the FIB beam raster: One spectrum per pixel

Averaging laterally and in depth

Imaging and Depth Profiling

Multilayer reference sample resolution

20 nm width line

line pair (line width and spacing 34 nm)

Aluminium ion image of AlGaAs stripes in GaAs Lateral resolution ~ 50 nm Features 20 nm across easily detected (not resolved)

VCSEL depth profile

Summary: Focussed Ion Beam Secondary Ion Mass Spectrometry (FIBSIMS)

Analytical technique exploiting sputtered ions Use Ga⁺ Focused Ion Beam (FIB) as primary ion source Much better spatial resolution and detection limits than SEM/EDX

<50 nm, < 1 ppm (instead of 1000 nm, 10000 ppm)

3D chemical images

Depth resolution <20 nm (comparable to glow discharge) Retrospective analysis (e.g. depth profile) possible Simultaneous secondary electron imaging

FIB-TOFSIMS much cheaper than dedicated TOFSIMS instrument

If you already have a FIB!

outline

Introduction to scanning electron microscopy

FIBSIMS

AFM in SEM

stress & strain from EBSD

in-situ micromechanical testing

AFM in SEM

Strength of SEM:

• Chemical composition

Strength of SPM:

• Mechanical/Electrical properties of surfaces

Limitations of SEM:

- no depth resolution
- Insulating samples
- Metrology

Limitations of SPM:

- Slow acquisition
- Small field of view
- Small depth of field

AFM in SEM

S P€C S[®]

applications: contamination boxes

20 nm

applications: diamond tips for nanoindenters

Nanowire

400 nm

EMPA_Thun 3.0kV 5.9mm x130k SE(U)

400nm

AFM-in-SEM nanobending

Hoffmann et al (2006) Nanoletters

AFM-in-SEM: nanoebic

Troyon M. et al, Ultramicroscopy 108 (2008) 605-612

Summary: AFM in SEM

SEM: sample topography overview, crystallography, chemistry

AFM: imaging (all modes)

Combined:

nanomanipulation, probing

hybrid operation (EBIC, SNOM)

outline

Introduction to scanning electron microscopy

FIBSIMS

AFM in SEM

stress & strain from EBSD

in-situ micromechanical testing

rapid prototyping

Electron Backscatter Diffraction

Formation of EBSD patterns: Geometry

- Electron beam strikes specimen
- Scattering produces electrons travelling in all directions
- Electrons that satisfy the Bragg condition $(n\lambda=2d.sin\theta)$ for a plane (hkl) are channeled \Rightarrow Kikuchi bands
- Electrons strike the phosphor and produce light
- Which is detected by a CCD camera and digitised
- The resulting EBSP is automatically analysed and indexed...

Formation of EBSD patterns: image formation

Large scale, multicrystalline thin film silicon

Figure 1:

Schematic of the laser-SPE process which will be established to realize large grained, low defective silicon layers on glass that have the potential for >10% efficiencies.

dislocation distribution: EBIC and OIM

Strain - stress analysis with EBSD: Cross Court

Cross-correlation between a strain free reference pattern and the pattern at the point of interest

• Rotation precision: 0.01°

• Strain resolution: 10⁻⁴

A.J. Wilkinson, G. Meaden and D.J. Dingley, Ultramicroscopy 106 (2006); Mater. Sci. & Tech. 22 (2006)

stress concentrations: EBSD

outline

Introduction to scanning electron microscopy

FIBSIMS

AFM in SEM

stress & strain from EBSD

in-situ micromechanical testing

rapid prototyping

size effects in materials

in-situ experiments

in-situ high temperature indentation system

Custom In Situ, Elevated Temperature SEM Indentation System

Current max temperature: 700°C

Independent Indenter Tip and Sample heating with feedback loop control thermocouples.

Contact drift tunable to < 0.1 nm/s

fracture of silicon micropillars

Moser B. et al (2007) J. Mater Res.

plasticity of silicon in uniaxial compression

in-situ EBSD compression setup

sample preparation

EBSD geometry

in-situ EBSD compression of GaAs

Strain / stress measurement during compression experiment

High resolution EBSD pattern recorded along the pillar

strain / stress measurement during compression

- Off-axis strain/stress are small but not negligible (not completely uniaxial)
- In particular, at pillar root and flat punch indenter nonuniaxial stress components

Crosscourt from BLG Productions

in-situ EBSD compression of GaAs

Deformed microstructure

Twinning indicates deformation via individual partial dislocations

ordered arrays of gold dots

Fabrication steps: Colloidal templating Au PVD annealing at 1000°C/1h

EBSD: single crystal <111>

001

101

200nm

displacement excursions & load drops

 $h_0 = 240 \text{ nm}$ $r_0 = 150 \text{ nm}$

High temperature plasticity of GaN microprisms and of a-Me

in-situ SEM indentation in Vitreloy-105

B. Moser (2005) Adv. Eng. Mater. 7, 388-392

effect of free volume?

load controlled compression of micropillars

Dubach et al. Scripta Mat. 60, 567 (2009)

In-situ elevated temperature micro-compression

Plasticity in a-Me at HT: flow stress

plasticity of GaN

GaN prisms grown by MOVPE on a sapphire substrate, collaboration with S. Chrsitiansen, MPI Science of the Light, Erlangen, Germany.

plasticity of GaN - 2nd order pyramidal slip

Slip system	Plane angle, ð	Direction angle, y	Schmid factor
$\{11\overline{2}2\} < 11\overline{2}3 >$	58.41°	47.31°	0.355
$\{1\overline{1}01\} < 11\overline{2}3 >$	61.96°	47.31°	0.319
$\{1102\} < 1101 >$	43.19°	61.96°	0.343

plasticity of GaN

plasticity of GaN - strain rate jump tests

plasticity of GaN - activation volume

the strain rate sensitivity exponent

$$m = \frac{d(\ln \sigma_f)}{d(\ln \dot{\varepsilon})}$$

the activation volume

$$V = \frac{\sqrt{3}k_BT}{m \cdot \sigma_f}$$

this yields an activation volume equal to

3.9 × 10⁻²⁹m³

or

 $1.2 \pm 0.5 b^3$,

where b is the Burger's vector, 0.3186 nm

plasticity of GaN - glide planes

The Peierl's stress was determined to be 3.75 GPa by linear extrapolation of the critical resolved shear to OK

 $Q=\tau_{\rm P}V$, the activation energy over this temperature range was determined to be 0.91 ± 0.2 eV.

Problems in the analysis: size effects? Dislocation nucleation versus propagation of dislocations? Initial dislocation density?

Schlussfolgerungen

TOFSIMS im FIB: höhere räumliche Auflösung, molekulare Information, bessere Nachweisgrenzen als EDX

AFM im REM: bequem, nicht blinde Manipulation, Hybridmethoden

EBSD: Neben Kristallorientierung und Kristallstruktur auch innere Spannungen

Nanomechanik: kleiner ist anders, Hochtemperaturversuche

Das REM ist das "Schweizer Messer" der Materialanalytik!

seeing is believing!

Achknowledgement: Jeff Wheeler, Bill Mook, Rejin Raghavan, Rudy Ghisleni, Sid Pathak, Matthias Schamel, Christophe Niederberger

Open post-doc positions at EMPA! contact johann.michler@empa.ch

GaAs (001)

 $2\mu m$

