

Neue Entwicklungen der GDMS zur Analytik für Dünnschichtsolarzellen

Cornel Venzago

Einführung: Historie bei AQura Glow Discharge Mass Spectrometry

- 1991: GDMS VG9000
- 2005: ElementGD (Kooperation mit Gerätehersteller)
- 2010: µs pulsed GD (Erweiterung selbst entwickelt)
- 2011: rf-GD TOF MS (im Rahmen einer Kooperation)

Vorteile der Massenspektrometrie als Detektor für die Elementanalytik

- hohe Spezifität
- hohe Empfindlichkeit (Bestimmungsgrenzen im ppt-Bereich)
- Multielementbestimmungen
- Isotopeninformationen
- Schnelligkeit und Robustheit

Ionisationsprozesse in der Glimmentladung

Sputterprozess getrennt von Ionisierung

Ionisationsprozesse:

Penning

Elektronenstoß

Charge Transfer

Fig. 1 Representation of sputtering, excitation and ionization processes in the glow discharge. M° =neutral sample atom; *=excited state

Detektor-System

Einführung: GDMS Probengeometrie

Einführung: GDMS Sputterkrater – Tiefenprofile Probe: Messing

Ergebnisse: Ergebnisse an EPI-Schichten

								FZ Silicon Wafer	
		EPI SI	otX1		EPI X2			Blank sample	
								1-2 Ohm cm	
		ppba	atoms/cm3		ppba	atoms/cm3		ppba	atoms/cm3
As	<	0,2	1,0E+13	<	0,4	2,0E+13	<	0,9	4,5E+13
В	<	0,4	2,0E+13	<	0,7	3,5E+13		260	1,3E+16
Р	<	0,5	2,5E+13	<	0,6	3,0E+13	<	1,3	6,5E+13
Sb	<	0,3	1,5E+13	<	0,3	1,5E+13	<	1,0	5,0E+13
AI	<	1,5	7,5E+13	<	1,8	9,0E+13	<	3,1	1,6E+14
С	<u><</u>	4300	2,2E+17	<	4400	2,2E+17	<u><</u>	5100	2,6E+17

Concentrations in ppb atomic and atoms/cm3

Ergebnisse: Sputterkrater – Tiefenprofile

Weiterentwicklung der GDMS

Erweiterung der GDMS auf dünne Schichten über eine mikrosekundengepulste Anregung

Die bisher angewandten GDMS-Geräte sind für ein kontinuierliches Plasma ausgerüstet

Dikontinuierliches Plasma schont die Probe und erlaubt ein langsameres Sputtern

Erste Installation bei AQura wurde im Rahmen eines EU-Projektes entwickelt:

GLADNET, Marie Curie action, im FP6

M. Voronov, T. Hofmann, P. Šmíd and C. Venzago, *J. Anal. At. Spectrom.*, 2009, 24, 676-679

µs pGDMS: Experimentelle Umsetzung

ELEMENT GD in DC pulsed mode:

ELEMENT GD high voltage cable connected to the output of a DC pulse voltage generator (RUP 3-3a) via a ballast resistor – current measurement

RUP 3-3a (GBS Elektronik):

- Pulse voltage: 0...-3 kV
- Max mean current: 100 mA
- Max peak current: 38 A
- Max mean power: 300 W
- Switch-off time: ~80 ns!

Ergebnisse: CulnS₂/Mo-Schicht auf Glas

Weiterentwicklung – CuInS₂/Mo Schichten auf Glas

Optimierung des Kraterprofils – Effekt der flow tube Länge

Weiterentwicklung – CuInS₂/Mo Schichten auf Glas

Weitere Optimierung des Kraterprofils

Sputtering time 10 min on floatzone Si wafer

Material Valley 19. April 2012, Hanau

Ergebnisse: ALD ZnO Schicht auf Si

• 950V, 270sccm, 20% dutycycle

- Layer transition clearly visible in the right depth
- Good cratershape is preserved after 4 min of sputtering

Ergebnisse: CIGSe auf Glas

- Na and Si profile well visible
- Full scale mulitelement analysis to sub-ppm level also possible

Ergebnisse: 1 µm AZO-Schichten auf Si-wafer

ura

Grenzen: ZnO/Al2O3 multi-layer ALD film on Silicon

• 900V, 260sccm, 1.5% duty cycle, sputtering time 48min

SEM picture of the multi-layer 20nm per layer

- All seven ZnO layers can be clearly distinguished!!!
- Unfortunately cratershape not measurable due to deformed sample
- Sample surface very rough after measurement, due to Al2O3-layers

rf-GD-TOF

GD-TOF-MS instrument at EMPA Thun, Switzerland:

- Orthogonal TOF MS mass spectrum up to 300 Da at 50 kHz extraction rate Tofwerk AG

Commercialisation 2012: Horiba Jobin Yvon

M. Hohl, A. Kanzari, J. Michler, T. Nelis, K. Fuhrer and M. Gonin, Surf. Interface Anal., 2006, 38, 292–295.

rf-GD-TOF

60 W 250 Hz 1 ms pulse / 4 ms period 30 kHz 3 ms acq. / 4 ms RF full period 90 Mass Spectra

Use of enhanced afterglow signal to generate depth profiles

rf-GD-TOF: ZnO/Al2O3 multi-layer ALD film on Si • Sputtering time 70s

SEM picture of the multi-layer 20nm per layer

Rf-GD-TOF: (nm Si Schichten auf ZnO)

Material Valley 19. April 2012, Hanau

GD-OES: 3. Generation PV

Silicon nanowire solar cell

GD-OES: 3. Generation PV

Silicon nanowire solar cell

Zusammenfassung

 Φ DC µs pGD in Kombination mit einem kommerziellen Sector Feld Massenspektrometer ist ein wertvolles Instrument für Analysen von Schichtsystemen der Dünnschicht-Photovoltaik

Die Eignung für Tiefenprofilanalysen an CIS- und CIGSe im
 Schichtdickenberiech von einigen 100nm bis µm wurde darstellt

Grenzen: Wenn nichtleitende Schichten vorliegen und d
ünnere Schichten im Bereich von 100nm und darunter

In the second second

Dank

- & Ausleihe von Gerätschaften Dr V. Hoffmann (IFW Dresden)

✤ Dr. Maxim Voronov and Dr. Petr Smid (Postdocs)

 Messungen und Technische Unterstützung: R. Fischer, Th. Hofmann, S. Bauer, H. Krischke, S. Roßberg, G. Bischoff and A. Bristot

& Kooperation GD-TOF: A. Tempez, Horiba JobinYvon

Dank

Für Ihre Aufmerksamkeit

