

evonik

C

Materials valley – CO₂ workshop

Dr. Daniela Kruse Creavis Technologies & Innovation

ENERGY EFFICIENCY CLIMATE PROTECTION

Disclaimer

This information and all further technical advice is based on our present knowledge and experience. However, it implies no liability or other legal responsibility on our part, including with regard to existing third party intellectual property rights, especially patent rights. In particular, no warranty, whether express or implied, or guarantee of product properties in the legal sense is intended or implied. We reserve the right to make any changes according to technological progress or further developments. The customer is not released from the obligation to conduct careful inspection and testing of incoming goods. Performance of the product described herein should be verified by testing, which should be carried out only by qualified experts in the sole responsibility of a customer. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products could not be used.

Contents

Evonik – Creavis

Science-to-Business Center Eco²

Innovation Management @ Eco²

Life Cycle Management @ Eco²

Development line CO₂ Separation and Use

Evonik figures 2011

Sales 2011	€ 14.5 billion
Adjusted EBITDA	€ 2.8 billion
Profitability (Adjusted EBITDA Margin)	19.0 %
Return on Capital Employed (ROCE)	18.7 %
Employees in 2011	33,556

Who we are: Evonik Chemicals Business Area R&D

Research, development and innovation are key elements in the strategy for sustainable growth

÷	€ 365 million R&D expenses in 2011
÷	+8 % higher R&D expenses versus 2010
\rightarrow	Approximately 2400 employees in R&D
~	More than 35 R&D sites worldwide
4	A large number of cooperations and

collaborations worldwide

Evonik R&D Structures – a risk adapted accelerator to stimulate innovation into profit

Position of innovation driving competences within Evonik

Creavis is a leading innovation center, creating sustainable and profitable business

The focus of Creavis

We create attractive growth for Evonik beyond existing portfolio

We address future markets driven by megatrends

Focus of Creavis We create viable technology & raw material platforms

We build up new competences in applying sustainability standards

We position Evonik as an innovative company

Contents

Evonik – Creavis

Science-to-Business Center Eco²

Innovation Management @ Eco²

Life Cycle Management @ Eco²

Development line CO₂ Separation and Use

The positioning of the Science-to-Business Center Eco² is aligned with future needs

Global Business Environment

SUSTAINABILITY TOPICS

Source: Science-to-Business Center Eco² (May 2012)

There is a market pull for energy efficient solutions and sustainable value chains

Strategic reasons for Eco²

Science-to-Business Center Eco² is driven by the megatrend "Resource Efficiency"

Strategic Approach of Eco²

Offering customers value-added sustainability solutions is a good way to differentiate from competitors.

The S2B Eco² pools the group's energy efficiency and climate protection expertise

Contents

Evonik – Creavis

Science-to-Business Center Eco²

Innovation Management @ Eco²

Life Cycle Management @ Eco²

Development line CO₂ Separation and Use

The stage gate framework has been tailored to Eco²s needs

Eco² Stage-Gate-Process as overview

Source: Science-to-Business Center Eco² (May 2012)

Idea Management Process

The Eco² stage gate process focuses on seven criteria for ideas or innovation projects

Gate Decision Criteria as Overview

Portfolio management plays three roles to ensure strategic value maximizing decision making: strategic alignment, optimization & balance

General perspectives of Innovation Portfolio Management

Align portfolio to business strategy by defining budget allocation goals for strategically important categories Allocate resources to **optimize the portfolio** in terms of ECV, R&D productivity, or some other **financial or non-financial metric** Balance portfolio in terms of time, capacity utilization, or some other metric where balance rather than linear optimization is advisable

Contents

Evonik – Creavis

Science-to-Business Center Eco²

Innovation Management @ Eco²

Life Cycle Management @ Eco²

Development line CO₂ Separation and Use

Eco² projects will be evaluated for their sustainability by Life Cycle Assessments

as per June 2011

S2B Eco² – Life Cycle Management

Background	Approach	Targets
 Climate protection is a public focus Need for standardized climate and sustainability data Innovative ideas for increased energy efficiency 	 LCM as an internal corporate service platform Corporate wide LCA standard Sustainability evaluation from product idea to marketing 	 Transparent data basis for internal assessments Evaluation of Evonik products and processes concerning sustainability and climate relevance Evaluation of an all encompassing "Evonik Carbon Footprint" CO₂-savings in the process and usage phase

"Carbon Footprint" will be a leading parameter for the evaluation of products and processes at Evonik.

LCA: Illustration of life cycle, impact categories and system boundaries

Life cycle

The methodology of the Carbon Footprint Estimation (CFE) model is similar to the existing LCA process, but focuses on the Carbon Footprint (CF)

CFE model is the certified Evonik standard for evaluation of innovations regarding CO₂e

Contents

Evonik – Creavis

Science-to-Business Center Eco²

Innovation Management @ Eco²

Life Cycle Management @ Eco²

Development line CO₂ Separation and Use

We would like to use CO₂ along the chemical and biotechnological value chain

as per June 2011

S2B Eco² – Lines of Development – CO₂ Separation and Use – Energy Efficiency – Evonik Processes

Background	Approach	Targets
 Anthropogenic emissions of CO₂ Climate change Chemistry is affected by emission trading Separation processes are massive cost drivers in chemical processes 	 Absorption of CO₂ from gas streams with optimized absorption materials Use of CO₂ in chemical syntheses Use of CO₂ in biotechnological processes Energy efficient separation technologies 	 Feeding CO₂ back into the value chain Create higher value products for application in fields such as transportation fuels, fertilizers, chemical feedstocks, animal feeds or others Competitive processes with lower energy costs

Energy efficient processes and syntheses for ecological and economic benefit are key.

Within two years we developed new promising absorbents and set up a simulation tool

Objectives

Results

- Lower the specific energy demand for CO₂ separation compared to available technology¹)
- Increasing chemical resistance of absorbent compared to available technology²⁾
- Simulation results of the "clean coal process" confirms a lower efficiency loss
- Life-Cycle-Assessments confirms the sustainability of new absorbents
- Over 100 chemical substances have been validated in the lab
- **Promising absorbents were identified** in the lab and patent applications for new molecular structures have been filed
- Simulation of total process (CO₂ separation and power plant) has been established

Partners

UNIVERSITÄT DEUISEBURG SPONSORED BY THE

Federal Ministry of Education and Research

CO₂ Separation

Source: Science-to-Business Center Eco² (May12012): 3.5 MJ/kgCO₂; 2) MEA :1.5 kg/tCO₂

A CO₂ capture plant was erected in the stack of a coal fired power plant to test promising absorbents in real flue gas

Process technology and picture of CO₂ capture plant

Source: Science-to-Business Center Eco² (May 2012)

Source: Science-to-Business Center Eco² (May 2012)

Requirement specification for new absorbents

 CO_2 CO_2 Molecular Viscosity absorption lift weight enthalpie **Environ-Price Toxicity** mentaly Selectivity friendly Absorption Chemical Corrosivity Foaming stability kinetics under planned defined investigation investigation

Utilization of CO₂ is not the key to mitigation of CO₂ emissions

Climatic impact of CO₂ utilization

- For the climatic impact of CO₂ utilization, **neither the amount of used** ٠ CO_2 nor the time of fixation are crucial.
- The **CO₂-emissions in comparison with the benchmark** are relevant. ٠ They are determined by **LCAs** considering:
 - Cradle to gate (same product generated in new process and \geq benchmark)
 - **Cradle to grave** (different products in new process and benchmark \geq for the same application).
- But: as only < 10 % of the anthropogenic emissions of CO_2 can be used in the chemical industry, the impact of CO₂ utilization is small.
- A significant contribution to the mitigation of CO_2 emissions can be ٠ achieved by improvement of energy efficiency and process optimization.

For the mitigation of CO₂ emissions, a combination of improved energy efficiency and CO₂ utilization is necessary.

Source: Science-to-Business Center Eco² (May 2012)

Utilization of CO₂ is economically attractive

Reasons for the use of CO₂

- Cheap starting material
- Non-fossil fuel based C₁ building block, thus lowering the dependency from fossil fuels
- Easily available also on a long perspective
- No costs for CO₂ certificates
- Non-toxic

For the energy-efficient use of CO₂ as building block in the chemical industry....

Challenge and approach of chemical use of CO₂

- **Challenge: CO₂ is extremely unreactive** and its reaction consumes much energy.
- **Solution:** CO_2 emissions of processes using CO_2 can be lower than CO_2 emissions of the benchmark, if:
- a) acids, esters and carbonates are synthesized (no alcohols because of CO₂ emission for reduction with H₂), and / or
- b) starting materials with small CO2 burdens are used; and / or
- c) Renewable energy is used for the new processes

process

CO₂ emissions will be reduced – highly added value will be created

Butane and CO₂ will be used instead of butene and CO for the synthesis of valeraldehyde

Commercial synthesis of valeraldehyde

- Important intermediate in the synthesis of plasticizer
- Large market potential > 300 kt/a
- Current synthesis relies on the hydroformylation of butene

New direct synthesis of valeraldehyde

- Dehdrogenation of butane yielding butene and H₂
- Hydroformylation with CO₂ and one additional H₂

An interdisciplinary team with a challenging task

Targets of VALERY

- Development of technical relevant catalysts for dehydrogenation of alkanes
- Development of technical relevant homogeneous catalysts for hydroformylation with CO₂

Consortium

- Immobilisation of homogeneous catalysts on porous support with ionic liquids ٠
- Design of an industrial relevant total process
- Analysis of CO₂ saving potential via Life-Cycle-Assessments (LCA) ٠

VALERY		
Budget	€ 1.7 Mil.	
Project start	1 st of November 2010	
Project duration	36 months	

VALERY

Within H_2ECO_2 we combine the regenerative generation of H_2 with the chemical use of CO_2

Organization of H₂ECO₂

EUROPEAN UNION Investing in your future European Regional Development Fund

This project is funded by the state North Rhine-Westphalia and co-financed by the EU Ministerium of Innovation, Science and Research of the German State of North Rhine-Westphalia

CO₂ utilisation for an economic and ecologic benefit

Scope of H₂ECO₂

Innovative processes for using **CO₂ as building block** in chemical production will be developed.

This will allow:

- Reduction in CO₂-emissions
- Broader access to CO₂ as C1 building block
- Creation of highly added value

New synthesis pathways using CO₂ as raw material...

- ...have to be evaluated in detail concerning thermodynamic, economic and ecologic aspects.
- ...need a clearly defined benchmark.
- ...can be energetic reasonable and economic interesting.

Favored target products

H₂ECC

Life Cycle Assessments are crucial to proof sustainability of CO₂ separation and use

Scope of H₂ECO₂

Situation

- Efficient CO₂ separation is a prerequisites for CCS and CCU
- Potential for chemical use of CO₂ is restricted to maximal 10 % of total CO₂ emissions
- CO₂ is an economically attractive raw material

Challenges

- Flue gases from coal fired power plants contain impurities
- Sustainable reactions with
 CO₂ as building block must
 lead to savings of CO₂
 emissions in comparison to
 the benchmark

Approach

- Energy efficient CO₂
 absorbents are being developed in EffiCO₂
- The chemical use of CO₂ is evaluated in two public funded projects
- **CFE** model as a tool for evaluation of ideas in terms of CO_2^{eq} emissions
- Sustainability of all projects have to be prooved via Life
 Cycle Assessments

