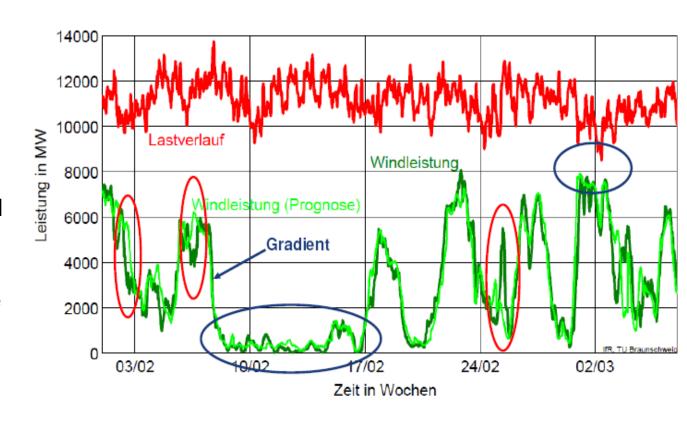

CO₂ Abtrennung, Nutzung und Speicherung für eine verlässliche und CO₂-arme Stromerzeugung

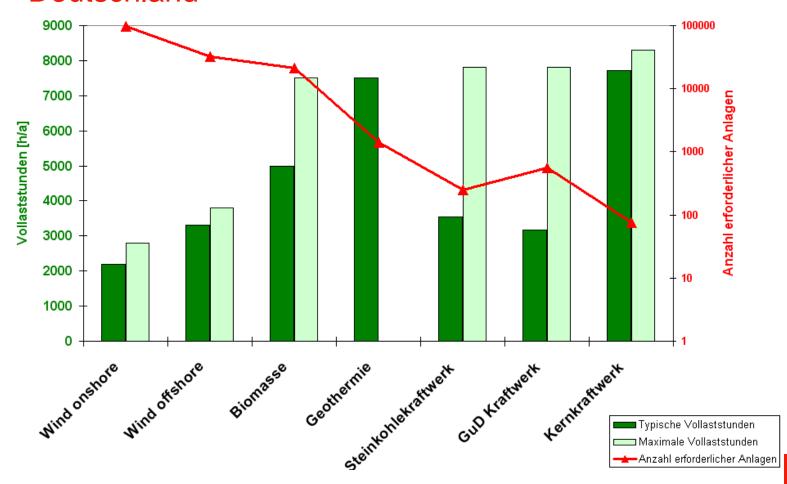
Dr. Peter Radgen Head of Innovation Center Carbon Capture and Storage E.ON New Build and Technology GmbH, Düsseldorf

CO2 Klimakiller oder Rohstoff der Zukunft für die organische Chemie, Darmstadt, Materials Valley e.V., 10. Mai 2012

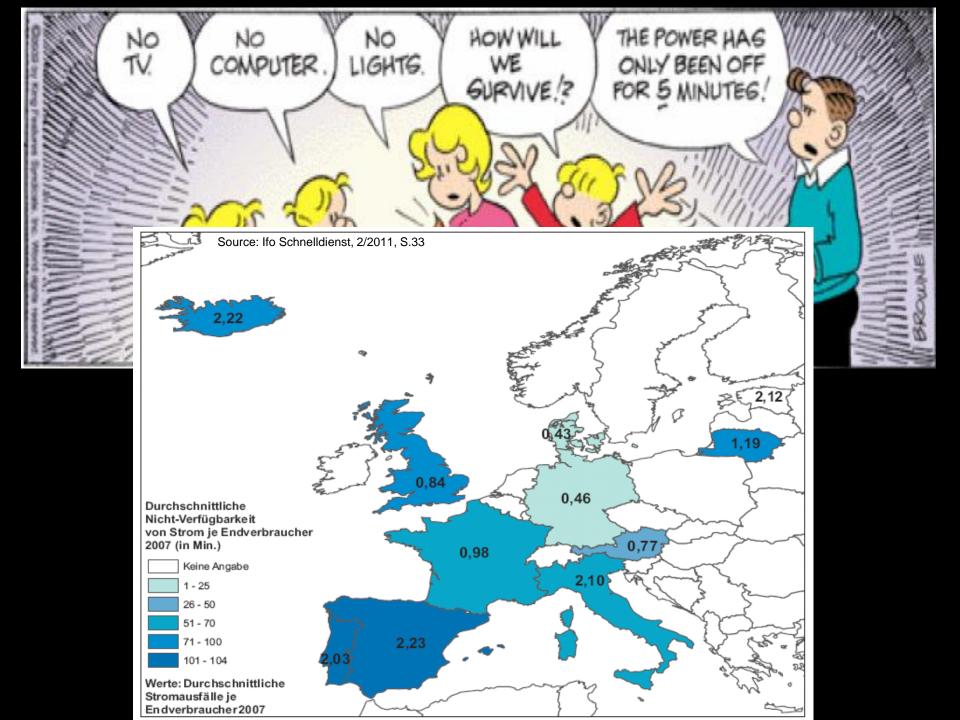
Vergangenheit und Zukunft des Energiesystems


Feste Nachfrage und flexible Erzeugung

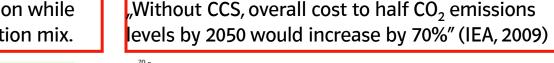
Feste Erzeugung und flexible Nachfrage

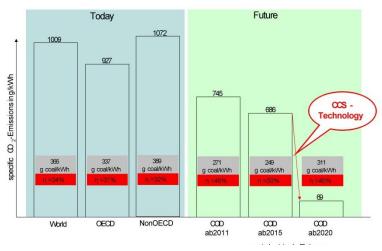

Herausforderungen durch fluktuierende Erzeugung

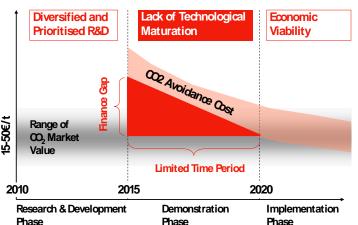
- Große Leistungsgradienten
- Abweichungen von Prognose und Erzeugung
- Erzeugung aus Wind deckt sehr hohen Anteil an Verbrauch
- Längere Zeiten ohne Angebot

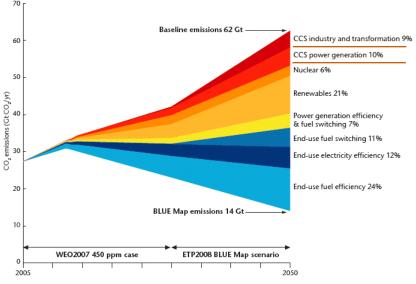


Volllaststunden und theoretische benötigte Anlagenanzahl zur Deckung des durchschnittlichen Strombedarfs in Deutschland








Drivers for Carbon Capture and Storage (CCS)

Decarbonising electricity production while keeping fossil fuels in the generation mix.

CCS to become a mature, reliable and cost effective technology for power generation in a carbon constrained world

Wie kann CCS realisiert werden?

Gastransport via Pipeline

Flüssiggastransport per Schiff

Photos: E.ON Gas storage, E.ON Kraftwerke, Thysen Krupp Uhde

Gasspeichertechnologie und Nutzung von natürlich gespeichertem CO2

CCS ist keine Erfindung sondern eine Innovation.
CCS kombiniert gut bekannte Technologien um neue Herausforderungen zu lösen.

CO₂ Abscheidung in der Düngemittelproduktion

Stromerzeugung aus Gas und Kohle

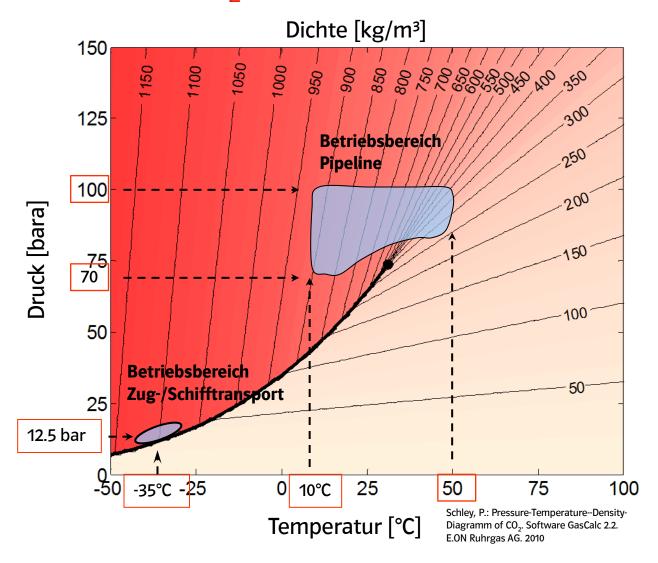
CO₂–Abscheidung in fossilen Kraftwerken – 3 verschiedene Technologien sind in Entwicklung

CO₂ zur Speicherung 1. Post Combustion Capture

CO₂ Abtrennung aus dem Rauchgas eines konventionellen Kraftwerksprozesses (Wäsche)

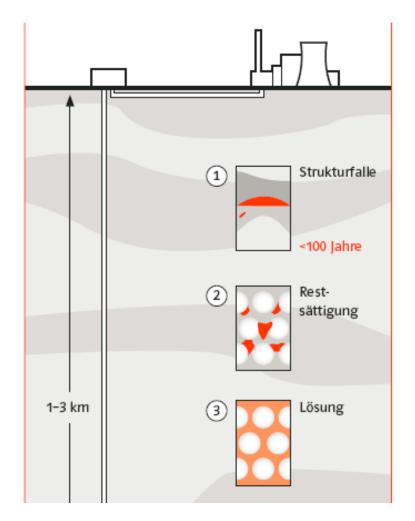
2. Oxyfuel

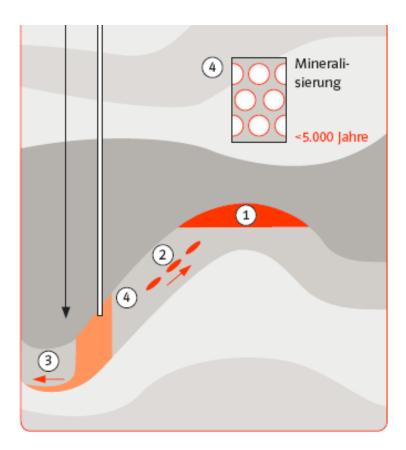
Verbrennungsprozess mit reinem Sauerstoff statt mit Luft


3. Pre Combustion Capture

Integrierte Kohle-Vergasung mit nachgeschaltetem GuD-Prozess (IGCC)

Maßgeblich für einen zukünftigen Einsatz ist die Wirtschaftlichkeit




Dichte von CO₂ als Funktion von Druck und Temeperatur

Speicherung von CO₂

Four Major Challenges to overcome for CCS

Technical/Industrial

- Uncertainties around CCS technologies (performances, operation, scale-up etc.)
- Potential bottleneck of CCS equipment for industrial ramp-up
- Costs and energy penalty
- Knowledge sharing in a (pre)-competitive environment

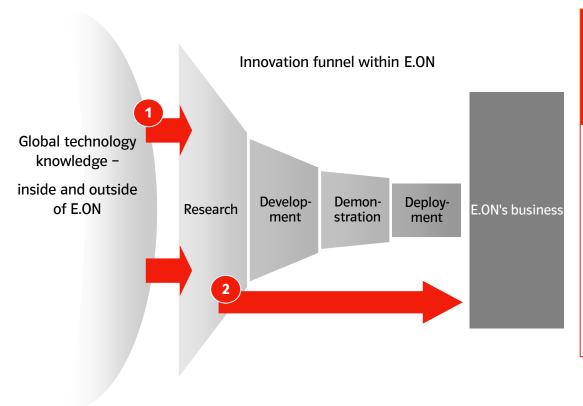
Financial €

- Uncertainty/lack of funding (EU. Member States etc.)
- Uncertainties around cost of CCS technologies, revenues and incentives
- Funding streams not in line with cost spending for CCS
- Development of new insurance tools

Regulatory ,

- Lack of regulation framework for permitting (especially storage)
- Need for long-term CO₂ regulation at national, regional and international level
- Lack of clarity on future role of coal

Public support (1)

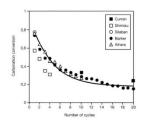

- Lack of awareness of CCS among general public
- Risk of NIMBY response to any new industrial assets (including CCS)

NIMBY = Not in my backyard

Source: ZEP D&I, 2009

Von der Idee zur Wertschöpfung

"Turning global technology knowledge into value for E.ON" by ...


- Transferring global technology knowledge into E.ON know-how
- Transforming know-how into value-creating business applications

CCS RD&D requires participation in all parts of the innovation chain

Basic Research

- New technology ideas
- Linking to scientific community
- Skill and competence built up

Applied research

- Technology Tracking
- New business ideas
- Risk minimisation

Pilot testing

- Process optimisation
- Process integration
- Informed buyer

Demonstration

- Up scaling experience
- Operational experience
- Long term behaviour
- Full chain integration
- Reliable KPI's

Increasing requirement of activities and budgets

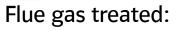
E.ON's activities for 2nd Generation Post Combustion

Capture Oslo Stockholm series of small scale pilot plants to validate technology improvements before next scale-up step 6 Aker CleanCarbon Statkraft **GASSNOVA** ScottishPower Karlshamn < 1 MW_{el}, 2009-2011, SOLVit project amine scrubbing (Aker MTU) Kopenhagen Longannet eon **ALSTOM CESAR** Esbjerg 15 MW_{th}, 2009-2011, completed Chilled-Ammonia Scrubbing (NH₃) 0,25 MW_{el}, since 2006, Esbjerg amine scrubbing (BASF, CESAR) e.on FLUOR. 5,5 MW_{el}, Mid 2012 Wilhelmshaven Berlin amine scrubbing (MEA) Amsterdam e.on Maasvlakte Gelderland London 0,5 MW_{el}, since May 2008 NRW.BANK UNIVERSITÄT DUISBURG ESSEN Duisburg amino acid salt scrubbing (TNO) Brüssel < 1 MW_{el}, 2012, Stadtwerke Duisburg HITACHI Inspire the Next Electrabel e.on Staudinger amine scrubbing (MEA and others) Luxemburg 1 MW_{el}, End 2012 Darmstadt amine scrubbing (MEA and others) COORETEC 1 MW_{th}, Since 2011, TU Darmstadt e·on **SIEMENS** Carbonate Looping Process < 1 MW_{el}, since September 2009 Vaduz amino acid salt scrubbing (Siemens)

Pilot Testing for CCS

Pilot scale test of CO₂ capture with Amino-Acid Salts in PP **Staudinger (Siemens)**

Pilot scale test of Chilled Ammonia CO₂ capture process in PP Karlshamn (completed), Alstom, in decommissioning)


CO₂ Capture Pilot Plant at Power Plant Wilhelmshaven

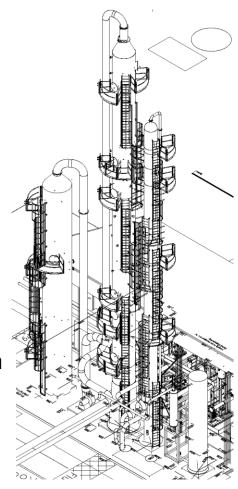
20.000 Nm³/h

Captured CO₂:

~3 t CO₂ / h

CO2-capture rate:

> 90 %


Footprint:

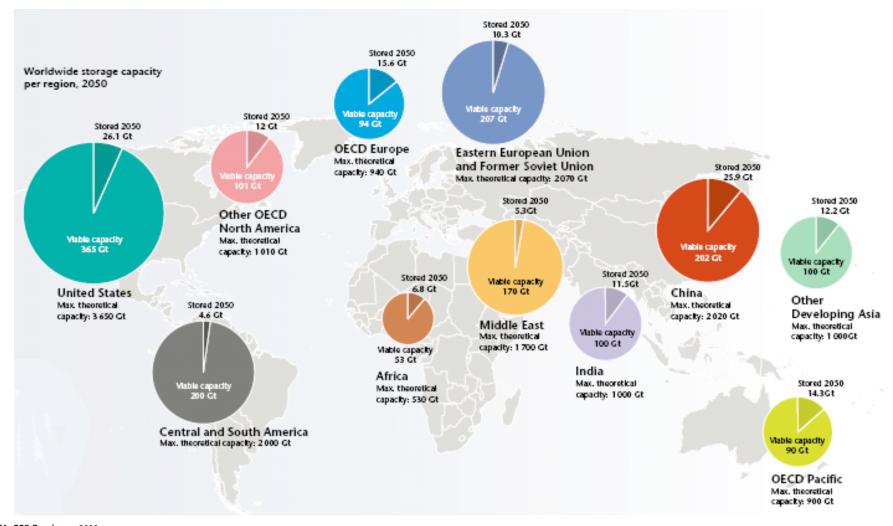
~ 400 qm

Highest Component: ~ 40 m

(Absorber)

On Site

E.ON's mobile lab for Post Combustion Capture Plants


- on-site analytics of CO₂ scrubbing solutions to support continuous pilot plants operation
- ensure proper comparison of different capture technologies and different CO₂ scrubbing solutions
- develop analytical procedures to ensure cost optimal operation of CCS demo plants
- ensure low emissions and defined CO₂ quality
- Possibility to offer mobile lab service to third parties

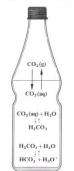
World Wide Potential for CO₂ Storage

Source: IEA, CCS Roadmap, 2009

CO₂-Einsatzmöglichkeiten

Chemische Nutzung

Methanol, Harnstoff Ameisensäure Zyklische Karbonate Calcit, Hydrocalcit Methan (inkl. Power to Gas Verfahren)

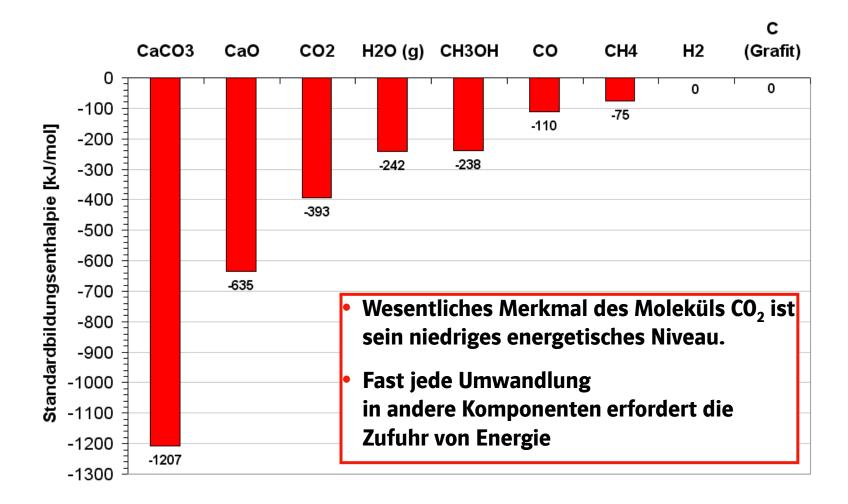

Biologische Nutzung

Biomasseerzeugung (Aufforstung; Algen natürlich, Algen Reaktoren) CO2 Umsetzung (Mikroorganismen)

Physikalische **Nutzung**

Getränke- und Nahrungsmittelindustrie Inertgas/Kältemittel **Isolationsmaterial** Imprägnier-/Reinigungsmittel Förderhilfsmittel Öl und Gasproduktion

Chemische Nutzung (Weltweites Marktvolumen)


	Marktvolumen weltweit	CO ₂ -basiertes Marktvolumen weltweit	
Wertstoff	Mio.t/a	Mio t / a	%
Harnstoff	130	94	73
Methanol	24	8	33
Anorganische Karbonate	8	3	38
Organische Karbonate	2,6	0,2	8
Polyurethane	10	< 10	< 100
Technische Nutzung	10	10	100
Lebensmittelindustrie	8	8	100
Summe	192,6	< 143,2	

Gesamtpotential entspricht ca. 0,37 % der weltweite anthropogenen CO₂ Emissionen von ca. 39000 Mio. Tonnen

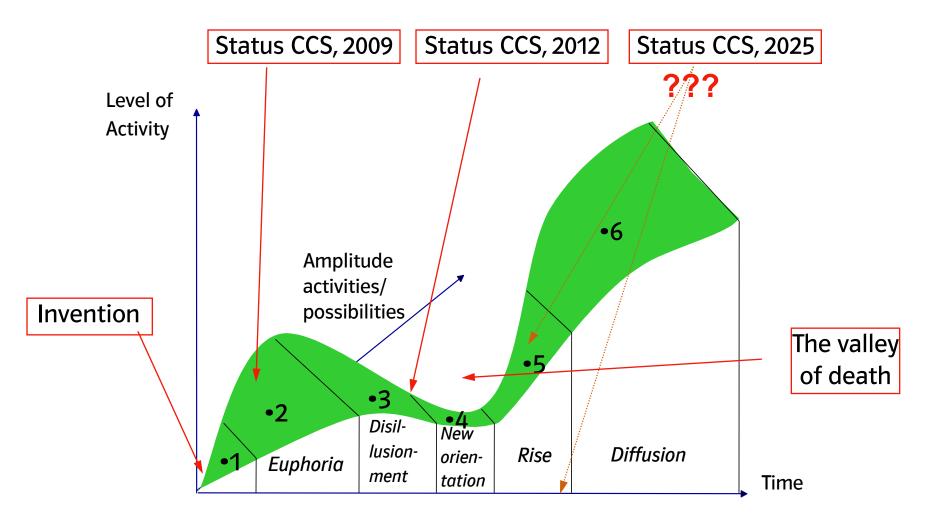
Quelle: Alexis Bazzanella: Physikalische/Chemische Nutzung von CO2, Netzwerk Kraftwerkstechnik, 15. Sitzung der AG 3, 17. März 2011. Eigene Ergänzung

Standardbildungsenthalpien

Methanolherstellung

Spez. CO₂-Gesamtbilanz für Herstellverfahren [t CO₂ /t Methanol]

- Klassische Methanolsynthese durch Erdgasreforming + 0,24
- Methanol aus CO₂ und H₂ aus Erdgas + 0,53
- Methanol aus CO₂ und H₂ aus Elektrolyse¹⁾ (dt. Strommix) + 4,29
- Methanol aus CO₂ und H₂ aus Elektrolyse (Strom aus EE) 1,38


Zu beachten:

Verdrängt der EE Strom Strom aus dem dt. Mix anstatt H_2 zu erzeugen und wird Methanol weiter aus Erdgas hergestellt, so lassen sich nicht nur 1,62 sondern 5,43 t CO_2 / t Methanol einsparen

¹⁾Strombedarf für Elektrolyse = 9076 kWh/ Tonne Methanol; CO₂ Emissionen Strommix Deutschland 0,625 kg CO₂/KWh

Model of Innovation Cycle (schematic diagram)

Zusammenfassung

- Strom aus fossil befeuerten Kraftwerken mit CCS ermöglicht die nahezu CO₂ freie und planbare Erzeugung von Strom
- CCS befindet sich am Schritt vor der großtechnischen Erprobung
- Sowohl die Kapital als auch die Betriebskosten von CCS müssen und werden weiter sinken
- Wie alle neuen Technologien ist CCS unter den derzeitigen Markbedingungen nicht wettbewerbsfähig
- Eine CO₂ Nutzung anstelle der Speicherung wird voraussichtlich nur in Nischenanwendungen (insbesondere EOR) zum Einsatz kommen. Sie stellt zudem häufig nur eine Substitution und keine Vermeidung da.
- Zu beachten: Derzeit gelten gemäß der ETS Direktive die genutzten CO₂
 Mengen als emittiert, es muss deshalb die entsprechende Anzahl von
 Zertifikaten trotz Nutzung abgegeben werden. Damit ergeben sich keine
 finanziellen Anreize für die Nutzung.

