Wacker-Lehrstuhl für Makromolekulare Chemie & Katalyse Institut für Siliciumchemie

Bernhard Rieger

Technische Universität München

Kunststoffe im 21. Jahrhundert Kommt der Kohlenstoff aus CO₂ ?

Workshop "CO₂: Klimakiller oder Werkstoff der Zukunft" Materials Valley e.V. Merck KGaA, Darmstadt, 10.05.2012

Inoue et al., *Makromol. Chem.* **1969**, *130*, 210 (JP 49031591, JP 48,068,695, Nippon Oil Company)

ali-Polycarbonates The Start

Kuran et al., Macromol. Chem. 1981, C21, 135

Soga ... Zn-Glutarate (ZnO + glutaric acid)

Soga et al Polym. J. 1981, 13, 407.

Rokicki, A.; Air Products and Chemicals, Inc.; Arco Chemicals Co. U.S. Patent 4,943,677, 1990, U.S. Patent 5,026,676, 1991. www.empowermaterials.com, DSM (Novomer 2010)

monoclinic, $P_{2/c}$

M. Ree et al., Catal. Today, 2006, 115,134–145. (Zheng et al., Z. Kristallogr., 2000, 215, 535.)

Zn(II) Precipitation Catalysts

* Y. Z. Meng, Polym. Sci. Part A Polym. Chem., **2002**, 40, 3579; ** J. T. Wang, J. Appl. Polym. Sci., **2006**, 99, 200; *** Q. Zhu, Polym. Int., **2003**, 52, 799

Zinc Dicarboxylates – Sold State Structure / Activity

Zn-Succinate

Zn-Glutarate

Zn-Adipate

Zn-Pimelate

hkl	d _{zn-zn}	d _{zn-Zn}	hkl	d _{zn-zn}	d _{zn-zn}	hkl	d _{zn-Zn}	d _{zn-zn}	hkl	d _{zn-Zn}	d _{zn-zn}
100	/	/	100	4.64	4,78	100	4.64	4,78	100	4.66	4.74
010	/	/	010	4.64	/	010	4,64	/	010	4.66	/
001	4,83	/	001	4,78	/	001	4,78	/	001	4,74	/
g/g ZnGA		3	g/g ZnGA		160	g/g	g/g ZnGA		g/g ZnGA		95
g·mol ⁻¹ ·h ⁻¹		0.3	g·mol ⁻¹ ·h ⁻¹		780	g∙m	g·mol ⁻¹ ·h ⁻¹		g·mol ⁻¹ ·h ⁻¹		530

S. Klaus, M. W. Lehenmeier, E. Herdtweck, P. Deglmann, A. K. Ott, B. Rieger, J. Am. Chem. Soc., 2011, 133, 13151

Ball-Milling – A Concept for Activity Increase ?

ball-milling in inert condition \rightarrow no activity activation with H₂O necessary

 \rightarrow formation of initiator groups

Coates et al, J. Am. Chem. Soc. **1998**, *120*, 11018; Coates et al. J. Am. Chem. Soc. **2002**, *124*, 14284; Coates et al. J. Am. Chem. Soc. **2003**, *125*, 11911; Coates et. al., Angew. Chem., Int. Ed. **2004**, *43*, 6618

Single Component Catalysts (SCC)

Eberhardt, Allmendinger, Luinstra, Rieger, Organometallics 2003, 22(1), 211

Poly(Carbonate) Molecular Weight Distribution

120 min / 60°C

20 min / 60°C

Flexible Tethers – Bifunctional Catalysis

"Tethered" Bimetallic systems Metal sites held in close spatial proximity Conformationally flexible tether

Mono-nuclear Cr(III)-Salen Complexes: Darensbourgh et al. J. Am. Chem. Soc., **1999**, *121*, 107 Darensbrough et al. Coord. Chem. Rev. **2007**, *107*, 2388

Di-nuclearity: Luinstra, Haas, Molnar, Bernhart, Eberhardt, Rieger, Chem. Eur. J. 2005, 11, 6298
 S. I. Vagin, R. Reichardt, S. Klaus, B. Rieger, J. Am. Chem. Soc. 2010, 132, 14367-14369
 S. Klaus, M. W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2010, 255, 1518

CO₂ Copolymerization Kinetics

too slow for continuous process ... and it is Chromium !

S. I. Vagin, R. Reichardt, S. Klaus, B. Rieger, J. Am. Chem. Soc. 2010, 132, 14367-14369

Stay With Zinc – Use Cooperative Effects

- 3-Step procedure
- High yields
- Kinetically stable complexes

Highest Activity Copolymerization

Promising:

- less than 1% cyclic carbonate
- TOF up to 7000 h⁻¹ (a literature: 2860 h⁻¹)

^a T. Bok, H. Yun, B. Y. Lee, Inorg. Chem. 2006, 45, 4228

A Change in The Rate Law

Coates^a mono-nuclear complexes

 $r = k \cdot [CHO]^1 \cdot [CO_2]^0 \cdot [Kat]^{1.7}$ for 10 bar CO_2

• Di-nuclear catalyst

 $r = k \cdot [CHO]^{0} \cdot [CO_2]^{1} \cdot [Kat]^{1}$ for 5-25 bar CO_2

A Solution For PO/CO₂ in a *Continuous* Process ?

Dr Dealmann BASE SE Dissociation

S. D. Allen, D. R. Moore, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2002, 124, 14284

Monomers of Choice: Propylene Oxide / CO₂ ■ Elongation at Break ≈ 600%

Tough

Transparent

Pleasant Haptics

UV-Stable

Biodegradable

Processable (extrusion & injection molding)

Molecular

- High molecular weights 2×10⁶ 6×10⁶ g mol⁻¹
- CO₂-content: 35 43 wt-%
- Carbonate linkage: 80 100 %

Thermal

- TGA no decomposition up to 230°C
- T_m = none observed; T_g = 25 40°C

Properties of PCHC

Poly(cyclohexene carbonate)

- brittle
- T_g up to 120 °C
- epoxide not available on large scale
- CO₂ content lower

Terpolymerization (\rightarrow Tg Increase) with Zn(II)-based Catalysts

 \rightarrow only poly(cyclohexene carbonate) formation

mass polymere vs. ratio CHO/PO

ratio CHO	/ PO
9	/ 1
7	/ 3
1	/ 1
3	/ 7
1	/ 9

Reaction Rates – Propagation / Back-Biting (bb)

prop: propagation

Lehenmeier, Bruckmeier, Klaus, Dengler, Deglmann, Ott, Rieger, Chem. Eur. J. 2011, 17, 8858

Porphyrins for Regioregular PPC

PPC Composition in PC Linkages / %

PPN: bis(triphenyl phosphin)iminium

J. Polym, Sci., Polym. Chem., 46, **2008**, 5959. MSc. Ivy Lim, Master Thesis, TUM, **2008** (with BASF SE) L. Shi, X. Lu, R. Zhang, X. Peng, Ch. Zhang, J. Li, X. Peng, *Macromolecules* **2006**, *39*, 5679-5685 W. Ren, X. Zhang, Y. Liu, J. Li, H. Wang, X. Lu, Macromolecules **2010**, 43, 1396.

Blends

BMBF - Technologien für Nachhaltigkeit und Klimaschutz, Chemische Prozesse und stoffliche Nutzung von CO₂

For The First Time: Commodities (ABS, PS) Without Oil

Pressemeldung Siemens "Laborpraxis", 03. Mai 2012: "Nachhaltiger Kunststoff mit Kohlendioxid aus Abgasen"

^a Rieger et. All., J. Am. Chem. Soc. 2002, 124, 20, 5646-5647; Rieger et al., Angew. Chem. Intl. Ed. 2008, 47, 3458-3460

iC⁴: Integrated Carbon Capture, Conversion & Cycling Die Chemie muss stimmen

BMBF-Programm:

Technologien für Nachhaltigkeit und Klimaschutz, Chemische Prozesse und stoffliche Nutzung von CO₂ http://www.chemieundco2.de/de/157.php

Acknowledgement

Product Inhibition

Reversible deactivation by cPC coordination

Complex Coordination Behavior

Chem. Eur. J. **2005**, 11, 6298

Polyethyleneterephthalate Polylactide Polyhydroxybutyrate

PET: Polykondensation

PLA: Ring opening

PLA

PHB: Bio-synthesis

Cooperative Mechanism ?

dinuclear complexes (only CHO!)

Ding 2005Lee 2005Lee 2005Lee 2006Williams 2009TOF: 140 h⁻¹ TOF = 200TOF = 0TOF = 2.860TOF = 25less PCHC1 bar !

S. Klaus, M. W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2011

Ionic Structures

 $TOF = 7.319 h^{-1}$ TOF = 7 TOF = 3.500 TOF = 26.000

S. Klaus, M. W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2011.