Dr. Thomas Schaub

Synthesis and Homogeneous Catalysis Process Research and Chemical Engineering BASF SE Ludwigshafen, Germany thomas.schaub@basf.com

0 10

BASF SE "Ammonia Lab"

Homogeneous Catalysis Group

5 PhD Chemists and 21 Technicians

Research Areas

- Hydroformylation
- Carbonylation
- Homogeneous Hydrogenation (*e.g.* Enantioselective Hydrogenation)

The Chemical Co

- Olefin Isomerization, Oligomerization, Telomerization
- C-C-Coupling Chemistry

Competences in Homogeneous Catalysis

- Catalyst Design and Synthesis
- Catalyst Recovery and Recycle
- Computer Assisted Catalyst Design
- High Throughput Screening

Raw Material Change

Alternatives for Petrochemistry

Gas	Coal	Biomass	Carbon dioxide

Carbon Dioxide

Availability

Quantity

Producer

Atmospheric carbon dioxide concentration has increased from ~280 ppm in pre-industrial times to 380 ppm today.

Source: BGR 2009

CO₂ as a C1-Building Block Present Use

CO₂ from anthropogenic sources

110 MT p.a. = 0.4 % presently used by industry

- Urea 70 MT
- Inorganic carbonates 30 MT
- Methanol 6 MT

CO₂ as a C1-Building Block Cost

CO₂ from anthropogenic sources

But: > 140 MT p.a. CO₂ emitted while producing these compounds! ⇒Net CO₂-production

Source: US Department of Energy

CO₂ as a C1-Building Block

Reactivity

The Chemical Company

CO₂ Hydrogenation Background

$$CO_2 + H_2 + NR_3 \xrightarrow{cat.} HCOOH \cdot NR_3$$

CO₂-hydrogenation with homogeneous catalysts in the presence of bases such as amines has been known for decades

Selected reviews:

W. Leitner, Angew. Chem. Int. Ed. Engl. 1995, 34, 2207-2221;

P. G. Jessop, T. Ikariya, R. Noyori, *Chem. Rev.* **1995**, *95*. 259-272

P. G. Jessop, F. Joó, C. C. Tai, Coord. Chem. Rev. 2004, 248, 2425-2442

P. G. Jessop, in The Handbook of Homogeneous Hydrogenation, Vol. 1 (Eds: J. G. De Vries,

C. J. Elsevier), WILEY-VCH, Weinheim, 2007, pp. 489-51

T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365-2387

C. Federsel, R. Jackstell, M. Beller, Angew. Chem. 2010, 122, 6392-6395

To date, no industrial process has been realized

- Leading technologies based on hydrolysis of methyl formate
- Methyl formate obtained by base catalyzed carbonylation of methanol
- BASF global market leader (230 kT p.a.)

Formic Acid via CO₂ Hydrogenation BASF Concept

The Chemical Company

Thermal cleavage of formic acid (FA) adducts with trialkylamines such as NHex₃ (THA) can be used for efficient formic acid separation

Use of solubility and phase behavior makes efficient catalyst recycle possible

Experimental Observations

The Chemical Cor

Long chain trialkylamines are immiscible with polar solvents such as diols

- Formic acid salts of these amines, however, are soluble in diols
- Hydrogenation can be carried out in this liquid-liquid system with lipophilic ruthenium catalysts
- Catalyst traces can be removed from raw product using amine from thermal product separation

Process Concept

Catalytically Important Species

Characterized by ¹H-, ³¹P-NMR and HRMS (ESI) spectroscopy

CO (1) 1917 cm⁻¹, vCO (2) 1908 cm⁻¹

Compound (2) could only be characterized by in solution, as it decomposes to (1) via loss of CO₂ upon evaporation of solvent

Spectroscopic data for (1): Shirakawa et al J. Am. Chem. Soc. 2004, 126, 13614-13615

Formic Acid *via* CO₂ Hydrogenation ³¹P-NMR

 $[Ru(PnBu_3)_4(H)_2]$ (20 mg, 0.02 mmol) was dissolved in Tol-d₈ (1 g). One drop of formic acid was added at room temperature.

The Chemical Company

Formic Acid *via* CO₂ Hydrogenation ¹H-NMR

 $[Ru(PnBu_3)_4(H)_2]$ (20 mg, 0.02 mmol) was dissolved in Tol-d₈ (1 g). One drop of formic acid was added at room temperature.

The Chemical Company

Formic Acid *via* CO₂ **Hydrogenation** In Situ Characterization of Catalyst Species

The Chemical Company

Catalyst formed in Situ

[Ru(COD)(CI) ₂] ₂ + 10 PnBu ₃	+ CO ₂ (40 bar), + H ₂ (40 bar) 70°C, 16h	Ru(PnBu ₃) ₃ (CO)(H)(HCOO) (2) in NHex ₃	
	NHex ₃ 2-Methyl-1,3-Propandiol - COD - [HNHex₃][Cl]	[HNHex ₃][HCOO] in 2-Methyl-1,3-Propandiol	

Observations in Reaction Mixtures

The Chemical Company

Reverse reaction using preformed catalyst

Observations in Reaction Mixtures

Reaction in the presence of excess CO

Biscarbonyl complex was characterized in solution via NMR- and IRspectroscopy - isolation of the pure compound was impossible due to high boiling amine solvent

- ^{1H} NMR: hydride triplet at -5.5 ppm (cis-coupling with two equivalent phosphorus atoms); Formate as singlet at 7.9 ppm
- ³¹P-NMR: singlet at 26.7 ppm, free phosphine at -32.9 ppm
- vCO: two equally strong bands at 1952 and 2036 cm⁻¹

Observations in Reaction Mixtures

Reaction in the presence of excess CO but without CO₂

Surprisingly, formate ligand appears to stabilize biscarbonyl complex in presence of excess phosphine ligands

Overview: Catalytically Important Species

The Chemical Company

Formic Acid via CO₂ Hydrogenation Role of CO

- Formic acid or NR₃*FA salts act as mild carbonylating agents
- Under the conditions of the catalysis, monocarbonyl complexes are the active species starting from ruthenium tetrakisphosphine complexes
- Complexes characterized using NMR, IR and independent synthesis
- If CO is added, inactive dicarbonyl complexes are formed
- Contrary to the opinion in most publications, CO-complexes play a role in CO₂ hydrogenation!

Formic Acid *via* CO₂ **Hydrogenation** Thermodynamics of CO₂-Hydrogenation

Although the hydrogenation of CO₂ to formic acid is exothermic, the reaction is strongly endergonic
CO₂ (g) + H₂ (g) → HCOOH (I)
ΔG⁰ = 32.9 kJ/mol; ΔH⁰ = - 31.2 kJ/mol, ΔS⁰ = - 215J/Kmol

Exothermic protonation of the base by formic acid delivers enough energy to make the reaction exergonic

> CO₂ (g) + H₂ (g) + NH₃ (aq) → HCO₂⁻ (aq) + NH₄⁺ (aq) ΔG^0 = -9.5 kJ/mol; ΔH^0 = -84.3 kJ/mol, ΔS^0 = -250J/Kmol

⇒ ca. 40-50 kJ/mol from salt formation necessary to drive reaction

Formic Acid *via* CO₂ **Hydrogenation** Thermodynamics of NHex₃•HCOOH Formation

■ Reaction of formic acid with NHex₃ studied *via* calorimetry 1.5 HCOOH + NHex₃ → [HNHex₃][HCOO•0.5 HCOOH] $\Delta H^0 = -28.1$ kJ/mol (per mol FA)

■ Reaction enthalpy can be estimated for CO₂ hydrogenation in pure NHex₃ 1.5 CO₂ + 1.5 H₂ + NHex₃ → [HNHex₃][HCOO•0.5 HCOOH] ΔH 0 = -59.3 kJ/mol (per mol FA)

The Chemical Cor

Not enough reaction enthalpy is delivered by amine protonation to make CO₂-hydrogenation thermodynamically feasible in pure NHex₃

Formic Acid *via* CO₂ **Hydrogenation** Thermodynamics of Adduct Formation in Diols

■ More reaction enthalpy is delivered per mol FA in the presence of diol HCOOH + NHex₃ → [HNHex₃][HCOO] (in 2-methyl-1,3-propandiol) $\Delta H^0 = -43$ kJ/mol (per mol FA)

The Chemical Company

Addition of the 1:1.5 salt to a stirred mixture of NHex₃ and 2-Methyl-1,3propandiol is exothermic and also yields the 1:1 salt

> [HNHex₃][HCOO•0.5HCOOH] + 0.5 NHex₃ → [HNHex₃][HCOO] (in 2-methyl-1,3-propandiol) $\Delta H^0 = -17.7$ kJ/mol (per mol FA)

Formic Acid *via* CO₂ **Hydrogenation** Thermodynamics of CO₂ Hydrogenation in Diols

CO₂ hydrogenation in the presence of diol is energetically in the range of CO₂ hydrogenation in the presence of NH₃
CO₂ + H₂ + NHex₃ → [HNHex₃][HCOO] (in 2-methyl-1,3-propandiol)
△H⁰ = -77 kJ/mol (per mol FA)

Solvent effect is what delivers enough reaction enthalpy to make the reaction exergonic under moderate conditions

Formic Acid via CO₂ Hydrogenation Solvent Effect

- OH-containing solvent is presumably stabilizing the formate anion via hydrogen bridging
 - similar to the role of the formic acid in the NHex₃•1.5 HCOOH
- Equilibrium concentration of formic acid in the product phase obtained during hydrogenation due to insufficient hydrogen-bonding beyond this concentration
- This concentration can be determined by calorimetry and is found at the point of maximum heat formation
 - this can be easily recognized, as less energy is obtained when adding formic acid beyond this concentration due to insufficient deprotonation

Overview: Thermodynamics

Thermodynamics

- CO₂ hydrogenation only delivers enough energy for the formation of the monoadduct of formic acid with trihexylamine (THA)
- The monoadduct, however, is only stable in the presence of hydrogen bonds to protic solvents

⇒ The real reason for the "alcohol effect" discussed in the literature

- A new process for hydrogenating CO₂ to formic acid has been introduced
- Process is based on the observation that NHex₃, unlike the commonly used NEt₃, can be thermally cleaved under relatively mild conditions
- Solubility properties and phase behavior of system components can be exploited in order to efficiently recycle catalyst species

The Chemical Company

- Calorimetric studies of the interaction of formic acid and amines have shown that systems studied only deliver enough reaction enthalpy to make the CO₂-hydrogenation reaction thermodynamically feasible when carried out in the presence of hydrogen-bridging solvents such as diols
- Participation of the alcohol in the catalytic cycle as has previously been proposed may be occurring, but is not mandatory
- Carbonyl complexes are formed in all cases of relevance to CO₂-hydrogenation when using highly basic alkylphosphine complexes such as Ru(PnBu₃)₄(H)₂ or Ru(PEt₃)₄(H)₂ as catalyst
- Formic acid and its' adducts are excellent carbonylation reagents for such highly electron rich transition metal complexes.
- This has implications for previously proposed mechanisms for CO₂-hydrogenation using ruthenium catalysts of this type, which have usually not incorporated such species.

The Chemical Company

Thank you for your kind attention!

Acknowledgements: Dr. Armin Bader

