





Workshop "Biokohle – Recycling von organischen Abfällen"

Funktion von Biokohlen in landwirtschaftlichen Böden und deren Einsatz in Biogasanlagen

Jan Mumme jmumme@atb-potsdam.de

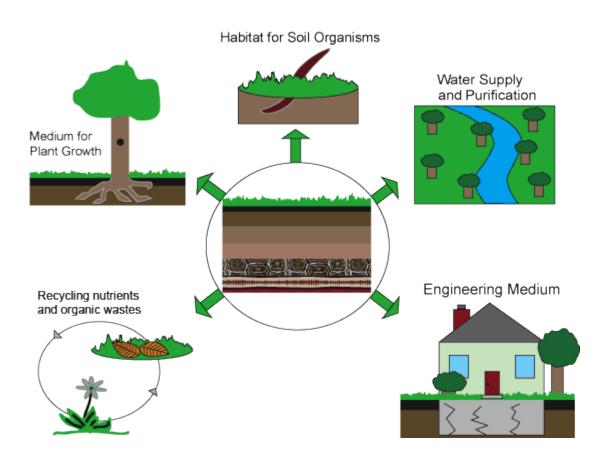
Burg Alzenau, 26. März 2015



## Gliederung

- 1. Biokohle im Boden
  - -> C-Sequestrierung
  - -> Treibhausgasminderung
  - -> Wasser- und Nährstoffhaltefähigkeit
  - -> Ertragseffekte
- 2. Biokohle als Hilfsstoff in Biogasanlagen
  - -> Abbau zu Biogas
  - -> Minderung von Hemmefekten
  - -> Nutzung als Aufwuchsträger




# Biokohle im Boden





### Funktionen des Bodens

#### The Five Functions of Soil





### Landwirtschaftliche Funktion des Bodens



<sup>©</sup> Lernort Boden, Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz (StMUGV) 2006. Alle Rechte vorbehalten.

#### ⇒Mineralische Bodentextur bestimmt die Fruchtbarkeit



## Terra Preta – Bespiel menschgemachter Böden

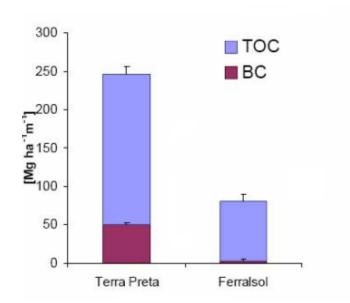
**Alter**: 500-7000 Jahre

Fläche: ca. 10% der Fläche Amazoniens

**Zutaten:** 

Holzkohle (Biokohle)

Pflanzenreste

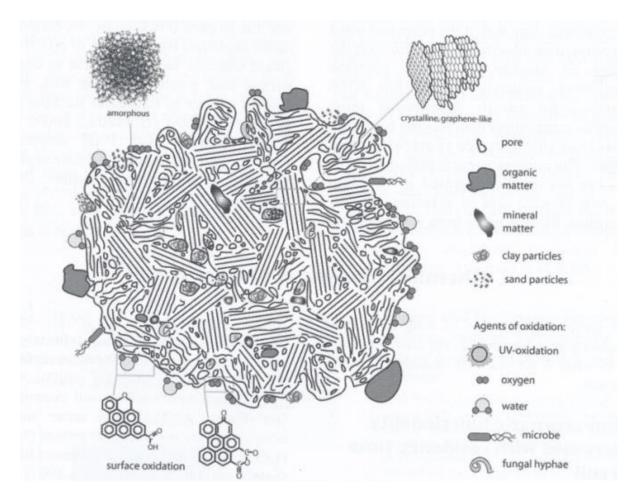

Asche

Knochen und Fischgräten

Tonscherben Weitere???



Glaser et al. 2001




⇒Das System "Biokohle" kann nachhaltig wirken.

⇒Wie kann Terra Preta technisch hergestellt werden?

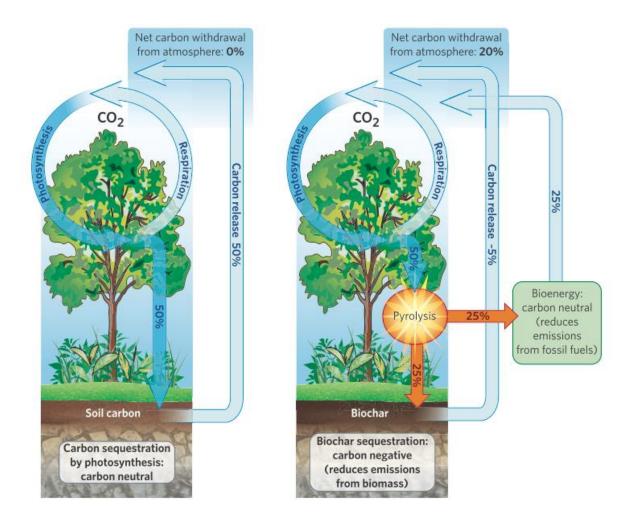


### Von Biokohle zu Terra Preta



⇒Biokohle bildet im Boden komplexe, heterogene Partikel




## Mögliche Wirkungen von Biokohle im Boden

- Nachhaltige C-Anreicherung
- Höhere Speicherfähigkeit von Wasser und Nährstoffen
- pH-Anstieg
- Festlegung von Schadstoffen (z.B. PAK, Schwermetalle)
- Positive "Lenkung" der Boden-Mikroflora
- ⇒Höhere Ertragsfähigkeit
- ⇒C-Sequestrierung





## Biokohle und C-Sequestrierung

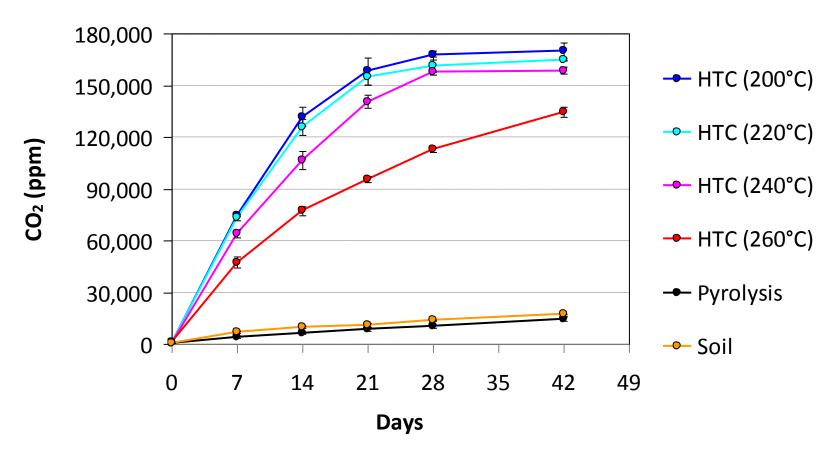


⇒Biokohle kann dauerhaft Kohlenstoff aus der Atmosphäre entziehen

Lehmann 2006

### Bodeninkubation im Labor

- 3 5 g Boden + 0.01 3.0 g Substrat
  in 125 ml Fläschchen
- Aerobe Bedingungen, 20° C
- Befeuchtung (40 80% WHK)>> anaerobe Microzonen
- Kurzzeit-Inkubationen < 60 Tage</li>
- Langzeit-Inkubationen > 2 Jahre
- Belüftung alle 1 8 Wochen
- CO<sub>2</sub> und N<sub>2</sub>O Analyse mit GC. Bestimmung nach Separtion mittels gepackte Säule FID >> CH<sub>4</sub>, ECD >> CO<sub>2</sub>, N<sub>2</sub>O








## CO<sub>2</sub>-Freisetzung aus HTC und Pyrolysekohle

Biomasse: Oliven-Presskuchen



⇒HTC-Kohle ist weniger stabil als Pyrolyse-Biokohle



### Stabilität von C-Materialen







C-Stabilitäf

Glukose

Cellulose

Holz

HTC-Kohle

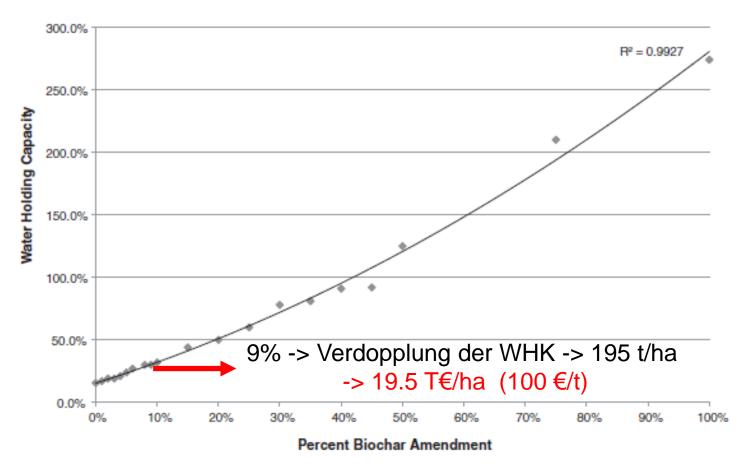
MVZ

4-29 y (Steinbeiss et al. 2009)

Ausgangs-Biomassen für Biokohle

Pyrolyse-Kohle

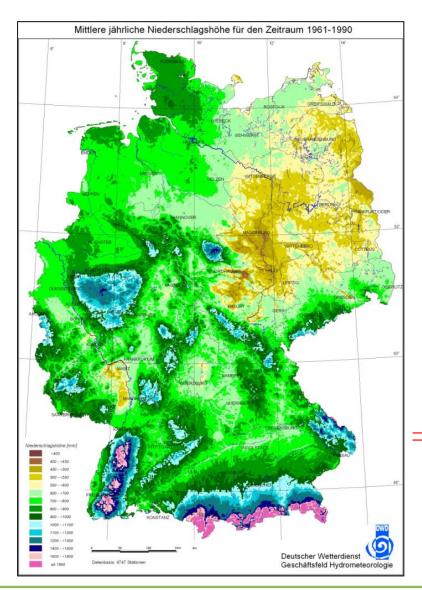
MVZ ~ 2000 y (*Kuzyakov et al. 2009*)


Vergaser-Biokohler

Holzkohle (Grillkohle)

Graphit



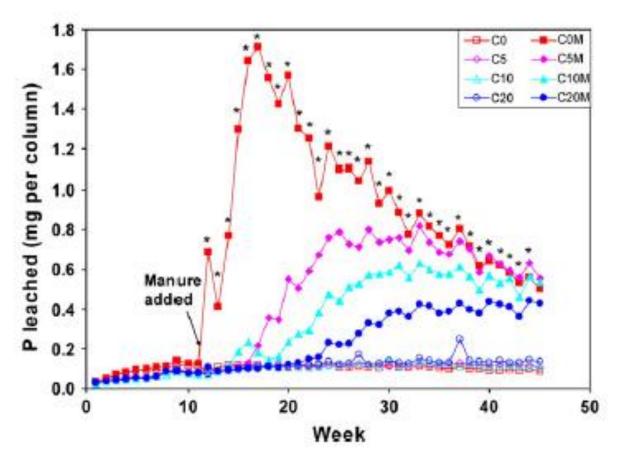

### Biokohle und Wasser



- ⇒Biokohle kann die WHK erheblich erhöhen
- ⇒Aber: hohe Kosten für Biokohle, Wasser nicht unbedingt pfanzenverfügbar, Zersetzung/Verlagerung der Biokohle über die Zeit

Yu et al. 2013

## Biokohle und Wasser




- Wenig Niederschlag
- Sandige Böden

⇒Vorzugsgebiet Ostdeutschland



## Biokohle und Nährstoffe - Auswaschung



⇒Biokohle kann die Auswaschung von Nährstoffen verhindern, insb. von Phosphor



Laird et al., 2010

## Ertragseffekte von Biokohle – HTC-Feldversuche

Parzellen: 1.5 × 3.3 m<sup>2</sup>

### <u>Boden</u>

Sandboden

● C<sub>t</sub>: 0.74%

pH: 6.1

### Varianten:

Frische HTC-Kohle aus Maissilage

Fermentierte HTC-Kohle

Dosierung auf 1% u. 2% C<sub>t</sub>

### Fruchtfolge:

Hirse 06/11 - 10/11

Roggen 10/11 - 05/12

Mais 05/12 - 10/12

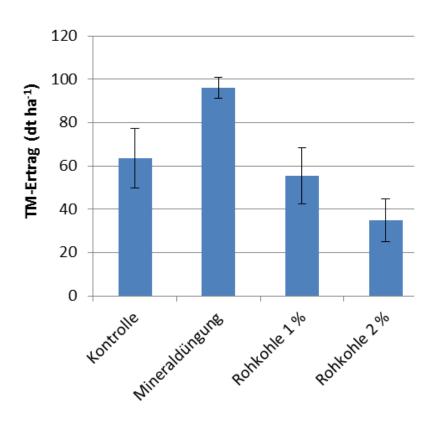
Weizen 11/12 – 08/13



## Erste Kultur (Hirse) nach der Biokohle



-> HTC-Kohle blieb auf der Oberfläche (->Hydrophob)




## Erste Kultur (Hirse) nach der Biokohle





## Ernteertrag der Hirse-Ganzpflanze



### -> frische HTC-Kohle hemmt Pflanzenwachstum



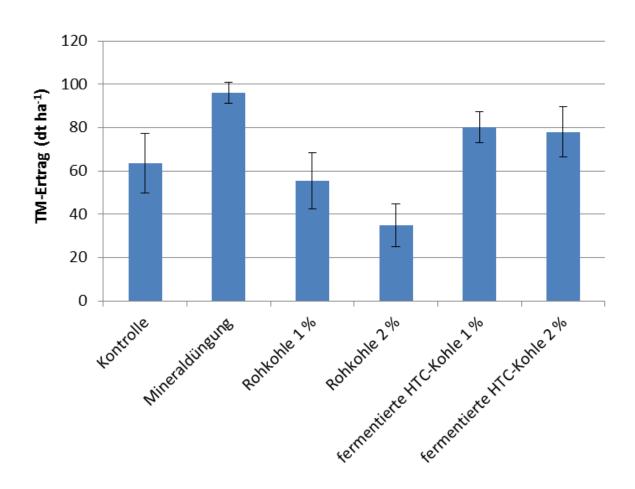
## Phytotoxische Effekte durch VOCs der HTC-Kohle

Table 5 Effect of 11 substances in concentrations as common in HTC process-waters on germination (in%), length of shoot and root (in mm) and shoot/root ratio of cress seeds after 5 days

| Treatment      | Germination    |      |          | Shoot length |      | Root length |      | Shoot/root |
|----------------|----------------|------|----------|--------------|------|-------------|------|------------|
|                | (% of control) | stdd | P ≤ 0.05 | (mm)         | stdd | (mm)        | stdd | ratio      |
| Control        | 100.0          | 1.9  | Α        | 15.7         | 4.8  | 22.8        | 10.7 | 0.69       |
| Formic acid    | 101.1          | 0.0  | Α        | 14.8         | 4.5  | 28.8        | 10.4 | 0.51       |
| Acetic acid    | 97.7           | 3.5  | Α        | 12.2         | 3.6  | 9.9         | 2.6  | 1.23       |
| Phenol         | 99.0           | 0.0  | Α        | 14.1         | 2.8  | 35.7        | 12.2 | 0.40       |
| Guaiacol       | 56.7           | 19.5 | В        | 7.8          | 1.6  | 7.1         | 3.1  | 1.11       |
| HMF            | 99.0           | 1.0  | Α        | 15.2         | 3.6  | 24.9        | 10.4 | 0.61       |
| GCD            | 97.9           | 1.1  | Α        | 14.2         | 3.0  | 13.3        | 7.6  | 1.06       |
| Glycolic acid  | 2.0            | 1.0  | C        | 0.0          | 0.0  | 0.0         | 0.0  | -          |
| Propionic acid | 101.1          | 2.1  | Α        | 13.2         | 2.4  | 23.1        | 8.2  | 0.57       |
| Levulinic acid | 3.0            | 2.6  | C        | 0.0          | 0.0  | 0.0         | 0.0  | -          |
| Tartaric acid  | 101.1          | 0.0  | Α        | 13.0         | 2.9  | 26.5        | 12.8 | 0.49       |
| Catechol       | 98.9           | 1.1  | Α        | 8.9          | 2.1  | 9.7         | 6.1  | 0.91       |

HMF, hydroxymethylfurfural; GCD, glycolaldehyde dimer, HTC, hydrothermal carbonization. Different letters indicate significant differences between the treatments using one-way ANOVA and following Student–Newman–Keuls test ( $P \le 0.05$ ).

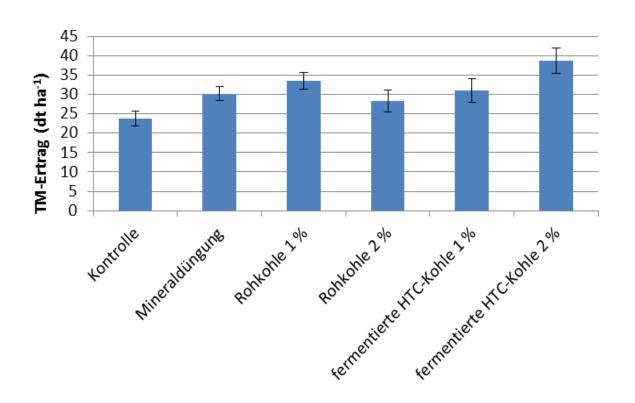
### -> Nachbehandlung von HTC-Kohle erfordlich




## Fermentation von HTC-Kohle...



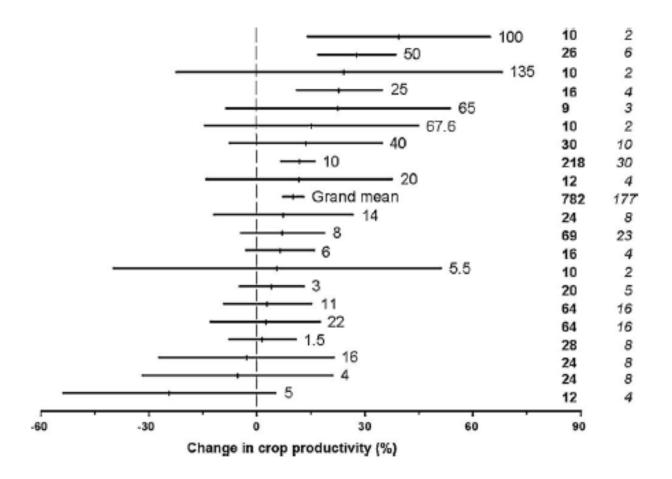
...bei mesophilien Temperaturen, drei Wochen.


## Ertragseffekte fermentierter HTC-Kohle



-> Fermentation reduziert Hemmeffekte




## Ernteertrag der 2. Kultur (Grünroggen)



- -> natürliche HTC-Alterung (Aging) reduziert Hemmung
- -> höchster Ertrag durch fermentierte Kohle
- -> in den nächsten Kuturen geringere Unterschiede Kontrolle/Biokohle



## Metanalyse publizierte Biokohle-Etragseffekte



- -> im Mittel 10% höherer Ertrag
- -> Spanne -28% bis +39%
- -> Komplexe Biokohle-Boden Wechselwirkungen



# BK als Additiv in Biogasanlagen

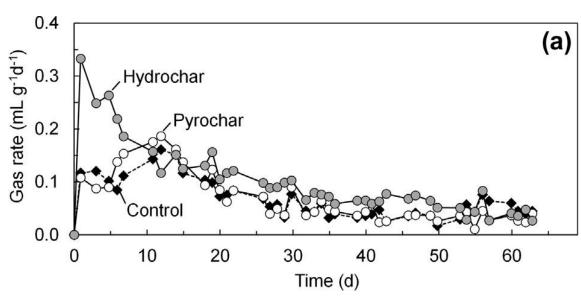


## Biogas-Prozessbiologie und Biokohle

Ш

Ш

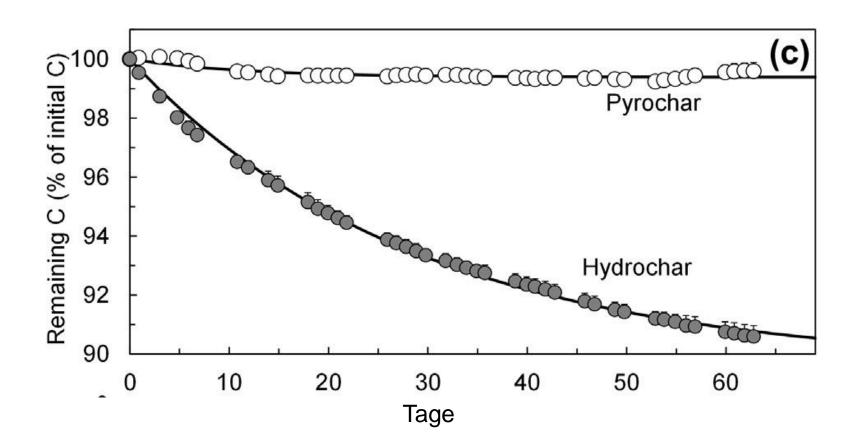
Generationszeit: 18 – 120 h


#### Polysaccharide <- Biokohle als Substrat?</p> Proteine 4-stufiger Abbau Fette **Hydrolyse** fermentative Organismen Zucker Generationszeit: 1 – 48 h Aminosäuren Glycerin Fettsäuren C<sub>14-24</sub> <- Biokohle zur Acidogenese Vermeidung einer Ammoniumfermentative Organismen Fettsäuren C<sub>3-6</sub> Hemmung? Laktat Alkohole Acetogenese acetogene Organismen H<sub>2</sub>, CO<sub>2</sub> Acetat **Formiat** Generationszeit: 9 – 120 h <- Biokohle zur Immobiliserung von MOs? IV Methanogenese methanogene Organismen

CH<sub>4</sub>, CO<sub>2</sub>



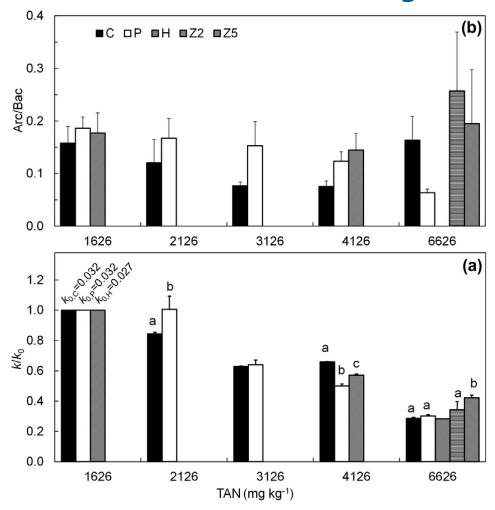
## Wirkung von Biokohlen auf die Biogasbildung






### -> höhere Biogasraten durch HTC-Kohle




## Stabilität von Biokohle im Biogasprozess



-> HTC-Kohle ist weniger stabil als Pyrolyse-Kohle

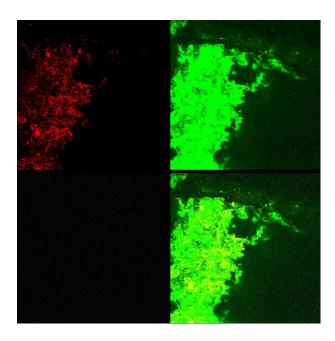


## Wirkung auf Ammonium-Hemmung und Mikrobiol.



-> Pyroyse-Kohle kann eine schwache Hemmung aufheben. Keine Wirkung bei starker Hemmung

-> Biokohlen erhöhen den Anteil an Archeen (Methanbildn.)


## Magnetische HTC-Kohlen und Biogas-Einsatz



Herstellung im Druckreaktor



Stabile magnetische Biokohle



Nachweis eines Biofilms nach Anwendung im Biogasreaktor durch Anfärbung



Reza et al., 2015

## **Fazit**

- -> Biokohle-Boden Interaktion äußerst komplex und langwierig
- -> Gesichert: C-Sequestrierung, Verbesserte Wasser- und Nährstoff-Haltfähigkeit, Hemmung durch frische HTC-Kohle
- -> Unsicher: Minderung von Treibhausgasen, höhere Ernteerträge
- -> Hohe Kosten von Biokohle -> Sandböden prädestiniert
- -> Biokohlen wirken vielfältig im Biogasprozess
- -> Begrenzter Abbau zu Biogas (HTC-Kohle)
- -> Begegnung leichter Hemmeffekte
- -> Verbesserung der mikrobiellen Struktur (MO-Träger)

